AD-A151 645 PRELIMINARY DESIGN OF THE ADA PROGRAMMING SUPPORT 171
NV!RONHENT CONFIGURRTION HRNRGER(U) RIR FORCE INST OF
H WRIGHT-PRTTERSON A SCHOOL 0
UNCLASSIFIED S H SCHULTZ JUN 84 ﬂFIT/GCS/ENC/82D 12 "F/G 972

PRI

T

B

e

E

fl2

FPECEERE

EEER

—

.

——

rr

r

13
—
—

==
Nl
5 IS

——
Lo o]

o [

N
(3%
I G

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-~ S
AD-A151 845

PRELIMINARY DESIGN OF THE ADA PROGRAMMING - _‘
SUPPORT ENVIRONMENT CONFIGURATION MANAGER
THESIS s
Susan M. Schultz '”'"':
Captain, USAF S
AFIT/GCS/ENC/82D-12

oTiC

........
..............

R o a o - T
el
T
ol
C
C
. {Cd
PRELIMINARY DESIGN OF THE ADA PROGRAMMING
SUPPORT ENVIRONMENT CONFIGURATION MANAGER
THESIS
Presented to the Faculty of the School of -4
4 Engineering of the Air Force Institute *‘-{
L~ of Technology S
[Alr University
- in Partial Fulfillment of the A
- Requirements for the Degree of —
h Master of Scilence - ua
" -
by
Susan M. Schultz, B.A. S -
Capt USAF Accessinn For -
Graduate Computer Science [pT1s crazl M X
DTIC Ti3 @ R
Unann<aneed] :

Justification

_—r

June 1984

By
_Distributien/

pTIC]
copY Availlarility Coedes o
—_ -——
INSPECTED }Avail and/or -
1 N

Dist [Special

A-1]

T N et Oy s N e e T T S T S e
“ e, Ty . .‘ - RS - o it e N e T T T e e,
PR A AT PN Y .u":nn-"l'.. v 'l. X% o 'n" L f "ol J PRI RS AEARASAE N R A AESE N (RSN

" DR IR PSRN i o
b .. - AR R AN
{.‘4 - -’ CASATAEASIA,

AR R A A e

Preface

The purpose of this thesis is twofold. First, it analyzes how
software configuration management is currently practiced, and second,
it gives a preliminary design for the Ada Programming Support
Environment (APSE) configuration manager.

I choose this topic because SCM is an important, but often
overlooked, discipline. SCM offers solutions to such common software
project problems as:

1. systems that do less than expected

2. systems that are delivered later than expected

3. systems that are poorly documented
The software configuration manager as a tool of the APSE will make SCM
easier to accomplish. Many of its tedious functions will be automated.

I would like to thank my advisor, Major Roie Black, for his help
and encouragement throughout this project. I would also like to thank
my readers, Lieutenant Colonel Harold Carter and Major Michael

Varrierur, for their suggestions and support.

Susan M. Schultz

ii

.........
...............................

-ed

.....

ACI

AFLC

AFSC

APSE

ASD

CA

cC

CCB

CDR

CDRL

CI

CcM

CPC

CPCI

CR

CRISP

DBMS

DOD

ECP

FB

FCA

Abbreviations and Acronyms

Allocated Configuration Identification
Air Force Logistics Command

Alr Force Systems Command

Ada Programming Support Environment
Aeronautical Systems Division
Configuration Auditing

Configuration Control

Configuration Control Board

Critical Design Review

Computer Design Requirements List
Configuration Identification
Configuration Management

Computer Program Component

Computer Program Configuration Item
Change Request

Computer Resource Integrated Support Plan
Data Base Management System
Department of Defense

Engineering Change Proposal

Functional Baseline

Functional Configuration Audit

111

T p— T

Lo et .
PR . ! f .
. B o
LGP RPN S W N

]
A

e e N o I T T o g N N W T P T o o

Abbreviations and Acronyms (Continued)

FCI Functional Configuration Identification
FQR Formal Qualification Review

- KAPSE Kernal Ada Programming Support Environment

;', PB Product Baseline

F PCA Physical Configuration Audit

{ PCI Product Configuration Identification
PDR Preliminary Design Review

PM Project Manager

t_‘ PMP Project Management Plan

g QA Quality Assurance
SA Status Accounting
SADT Structured Analysis and Design Technique
SCM Software Configuration Management
SDR System Design Review
SIR Software Incident Report \
SOW Statement of Work -
SRR System Requirements Review .]
TAC Tactical Air Command 2
T&E Test and Evaluation j
V&v Verification and Validation _ 1‘

R
iv

v e m ae e atatmeieyeaeas e ..
e T T T T e e e e et e A A N U T P P

At LN A T e Lt Lt e e Lt e e ‘o) St et et et e -
PR AN SR VLIS I S S I I LR A 5K Sy P P W AR OO AR S

v

Contents

Pteface e & e © & & & ¢ & & 6 & ° * o 5 & e ° s o s B s e ° e s+ o i 1

.
»
»
P.;
>
LR
b,
SN
3
3

Abbreviations and ACTONymS =« « ¢ « o« o o« o o s o+ o s ¢ o o o o o 111

List of Figures . vii

.
.
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

List of TableS « ¢ ¢ o ¢ o o o o o o o o o o o ¢« 2 o » o o s o« o viif
ADSETracCt « o o 5 o s o o ¢ o s o 5 s s s s o o & 5 s s s o s o ix
I. Introduction « « o o o s o ¢ o ¢ s s o o ¢ o s o & ¢ o o 1

Background . « « o ¢ o ¢ o « o o o ¢ o ¢ o ¢ o o s s o »

Problem Statement . « « « ¢ ¢ o o o o o o s o o o o s s
organi ZALION ¢ ¢ o ¢ o o ¢ o o o o o o s 6 6 6 s s s s e

S~ o=

II1. Managing A System .« « « ¢ o o ¢ o s o o s o o ¢ o s o o @ 5

Inttoduction e ¢ & o & & & s 6 » » 8 5 ® 5 v o e © e o e
ProcesSSeS .« s o o s o o o o o o o o s o o s o o o o o o
System Life=Cycle « ¢ ¢ 2 ¢ o o o o o o o o o o o o o o

~N v n

III. Software Configuration Management . « + « « ¢ ¢« ¢« & o o & 14
Introduction « « o » o ¢ o o o o o o o o o o o o o o o o 14
Configuration Identification « « « ¢ ¢ ¢ ¢ ¢ o o ¢ « « & 15
Identifiers o o ¢ o o ¢ ¢ o o o o o o o o o o o o s o o 18
Configuration Control « « o ¢ ¢ o ¢ « o o o s o o o o« o 20
CM Plan .« « ¢ o o o ¢ o o o o ¢ ¢ » o o o 5 o » o o 22
Status Accounting « ¢ ¢ o ¢ ¢ ¢ o o 4 o e 0 e s e o e o 25
Configuration Auditing « ¢ ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o ¢ o ¢ ¢ o o 28
SUMMATY ¢ o o o o s s o o o o o o s s o s o o s o s o o 31
1v. Requirements « « o s o o o o ¢ ¢ s ¢ o o o ¢« ¢ o o o o o & 33
INtroduction « « o o o o o o o o o ¢ s ¢ s 5 s o o o o o 33
Ada Programming Support Environment . « « ¢ ¢ ¢ o o o « a3

Software Configuration Manager Requirements « 36 o]

Status Accounting Requirements « « « « ¢ « ¢ « o« o« o o+ 40 e

e

..... St et e . . - " - -

. - S e . e, L. NN

I I S ettt e e e . A e e ettt am ettt e e e e N P T

& L. @ T e e L e e T T e T T et e e e e e e e e e e e e
- . - - - - -+ » - . - - - - - . o " te N - N * N K *, N * *,

Bl el Sl o, PPy ol AL oy PPN, PP P st a s gt e gy o gt s e e S o te

.
RN TR
Rl N T ST VP Th WAL Y s

-
L
‘

=

e v e g g - L mant e 4
Ve TR LTS SRR S, . Al LRI SRS M i s e S A et S St 2) T

r

Contents (Continued)

Functional Design e & o o o e o o s & & ° e s e » e o o » 43

Introduction ¢ o« o ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o = 43
Diagrams-......-................ 45

VI. Conclusions and Recommendations . . « o« o & ¢ ¢ o s o o & 60
Bibliography « « ¢ ¢ o o ¢ ¢ ¢ o o s o o o o o s o s o o o » » s 62
Appendix A: An Example of a CR, SIR, ECP « & « ¢ « o ¢ o« & o« o = 64
Appendix B: DID for SCM Plan « « « ¢ « o o o s o o ¢ ¢ s o o o o 67

VIEA ¢ o o o o o o ¢ o o o o o o o o o © o o o o o o o o o o o o 70

%

atale 4

vi

e
st
; .44_4

.L..:J"_A

PSR U N LI TR WL PR
. " e e T e S e e Y T

X

. B
. - . . - . - 3 Y - . . 0 - c Y et . - . . - ",-
DI PAL IRA IR T AT IAE PRI PRSP TSN P T SN DS I DR . VAR U S S AL IR I I VALY S AP I I

‘ Figure

2.1

o
3.3
3.4
, 4.1

5.1

List of Figures

System Life~Cycle « « « ¢ o o ¢ o o o o o o o o
Structure of a System Given in a Tree Chart . . .
Typical Steps Used to Make a Change to the System
Typical Events to Record for a CR . . « ¢ « « o »

Major SCM Events in the Life-Cycle

APSE SEIUCLULE « o o o o o o o o s o o o v o o o

SADT Arrow Definition « « o ¢ ¢ o o ¢ o o o o o o

vii

)

. - - L] . . - - - ¢ - . - - . - - . - - - - - . . ~ . . . - . . . B .

e e a ettt
n a 3 oy kY | 5 4 LY Lol » L]] n 'R [} (] -l 'A‘-LA_‘-'._‘.‘-'-"'L_'_-'A'A"'A'-'A‘J‘-' b

W T T

Page
13
17
23
27
32
37

44

PR
(Y Y W'Y

TR T VI
Gt '

JIY O A

'
l"

:

Lo

o

14

e P
. | U ST
. .'.a._“:AL._.g STy

oAb

b
AR ot <y
AP AL

PAPLTLT LA RPN W 2

)
el

I
.t

RN

List of Tables

l Table Page
I Overview of Reviews and Audits . « ¢ ¢ ¢ o ¢ ¢ ¢ « 8

11 Characteristics Used to Group Software
E Processes Into CPCIS . o « o o o o o ¢ o o o o o 19
III Verification and Validation Characteristics . . . « 29

IV List of Tools and Techniques Used in V&V« . 30

i\

viii

L

-, al w s . . .
........ PN PR N IR LN
o T P S Y

D R e AL e .

LS P -, - 0 PP S I S -t . Sr e
AR R O AR R PO O P PR R P R R U PR A AT ALY

o W W e e T T e T TR T Pt ~ e N ——
i - e N . - N B R B NP R el R S e T . T il Wil

Abstract

.l Today the development and maintenance of software are becoming -

prohibitively costly. With the goal of reducing the cost of producing
a software system without sacrificing the quality of it, the
[; Department of Defense (DOD) is sponsoring the development of the Ada)
Programming Support Environment (APSE). This paper explains the \
APSE. It also explains the requirements and gives a preliminary
design of one of the major tools of the APSE, the configuration
manager. The preliminary design of this tool is presented using
Structured Analysis and Design (SADT) diagrams. The preliminary
design includes only a functional description of the configuration

manager. How to implement it is left for further research.

Prior to presenting the preliminary design of the configuration ﬁkff

manager, a description of how SCM is currently practiced is given.

R YRR) DA DA
B

SCM is divided into four functions. They are configuration ;;;

identification (CI), configuration control (CC), status accounting

P (SA), and coufiguration auditing (CA). SA is the only function that

1 can be completely automated. Therefore, the preliminary design

o emphasizes the SA function.

°

» i
- ix

»

...........

. e . :
. . e 4y . ‘. !
VPP S L Ry Y. o .

el
SO
A .
el il e,

PRELIMINARY DESIGN OF THE ADA PROGRAMMING

SUPPORT ENVIRONMENT CONFIGURATION MANAGER

I Introduction

Background

Today in projects that involve both hardware and software, a
"software problem” exists. Software systems are prohibitively
costly. The Department of Defense (DOD) estimates that, in projects
that involve both hardware and software, only 15 percent of the total
cost is attributed to the hardware. Of the software cost, 70 to 90
percent of the money is used for maintenance and long-term life-cycle
support (Ref 10:4). With the goal of producing quality software at a
lower cost, the DOD is supporting the development of the Ada
Programming Support Environment (APSE). Briefly, the APSE is a
pro ject to develop an environment to create software primarily for
embedded computer systems. The APSE consists of the new computer
language, Ada, and a complete set of automated tools to develop, run,
anc aanage Ada programs. The requirements of the APSE are presented
in a DOD document called "Stoneman” (Ref 10) which will be referenced
frequently throughout this paper.

One of the APSE tools is the configuration manager. This tool
is to automate as many of the Configuration Management (CM) tasks as
possible. (M is defined in AFR-65-3 as:

o o « a discipline applying technical and administrative direction
and surveillance to:

1. 1identify and document the functional and physical
characteristics of a configuration ftem

I PSP S S I R
L e e . s ‘ -'\\‘- -

R A A L e e R A .
S To e, e T vt e e el N e e . N o T L e e T A e e e
AP IR S RIS Tl S Tl TP W SO S I ST o I I o 0. e W S it S SO SR S I I I S S S L)

- b ot A

wid

T R T T N T e T W YT r—— -

2. control change to these characteristics, and
3. record and report change processing and implementation
status (Ref 19). - -
In the past, CM was applied almost exclusively to hardware. CM
was not applied to software primarily because programming was
considered to be almost an art, not a scientific method used to build
a product. Few design techniques were used and changes were made
haphazardly. Today attitudes towards software have matured. A piece
of software is considered a product, and many tools and techniques,
including CM, are used to produce it.
CM applied to software is called Software Configuration
Management (SCM). Although SCM has taken its terminology and —
structure from CM, differences exist between the two. The differences
are caused by the differences in managing software and hardware.
These differences are: ;;“
1. Software is easily changed in any stage of the life-cycle
while hardware is not.
2. Hardware components wear out while a piece of software will oo
not .
3. A production phase is not needed for software. It is easily
reproduced.
In order to accomplish the goals of SCM, it is divided into four
functions. They are Configuration Identification (CI), Configuration
Control (CC), Status Accounting (SA), and Configuration Auditing
(CA). CI involves identifying and labeling the software items of the

system. This function 1s important in order to have a reference point

e A .
B R R NS NN e g e e e e e e e .
. RO e e e et e S e e e e e e s PR NS e
A S AP A P AL, Al LT L e e e e e e

IS P BTSN . L e e e e . .
APRELF VP AW i S I U DI T U DRI, P S I ST DR A T WA D VAT AT WA A PRSI SRR R A Yl

PR A T TR U™ e S araiar S e a0n e Son ne e sre e aee o o v

for changes. CC involves methods of controlling changes made to the
system. This is accomplished through documentation, procedures, and -
the Configuration Control Board (CCB). SA involves recording, gff:{
storing, and reporting the history of the system. Both automated and T
manual techniques are used. CA involves verifying that the software g

parts of the system are what they are claimed to be through the use of

software audits.

Problem Statement

The prime purpose of SCM is to control the software and its
associated documentation throughout the project. 1In the APSE, all the
information relating to a project is stored in a data base.
Accomplishing SCM in the APSE will require manipulating data that
resides in the data base. The goal of this paper is to give the
preliminary design of the APSE software configuration manager.

The SCM functions of CI, CC, and CA can not be fully automated.
The CI task requires that a decision be made on how the software
system 1s divided up. How this division is made is influenced by many
factors and is unique for each project. CC consists of a set of
policies and procedures that project members must follow. These
policies are made by management and will differ from proi.ct to
project. CA is rechecking the work already done. Automated tools
will only assist in this task. The success of CA still depends

heavily on decisions made by the auditors. In contrast, SA can be

fully automated. The task primarily involves storing and retrieving lf5'3

selected data from the data base. Due to the fact that of the four

I R T P S N v e

* - - n et T te N, e IS T I IR TR T S T R et e Tt et e e e T ® et

L S s e SN ISP T T A L P R R T P I R N TR N
» T A RIS BRI LS e TR R I N I S AL P VA AT NN AR

AN

SCM functions only SA can be fully automated, the preliminary design

will stress SA.

Organization

To produce this preliminary design, it is necessary to
understand how a system is managed. Chapter II discusses this. In
addition, it is necessary to understand exactly what SCM is and how it
is practiced today. This information is given in Chapter III. Since
the configuration manager is part of the APSE, all the requirements
set forth in "Stoneman” must be met. An overview of the APSE and its
requirements are given in Chapter IV. The specific SCM and SA
requirements are also given. Chapter V presents the requirements in
the form of Structured Analysis and Design Technique (SADT) diagrams
with a focus on the SA function. The last chapter gives conclusions

and recommendations.

IT Managing the System

Introduction
This chapter gives an overview of managing a system. The phases
of the system life-cycle are defined and the major events that happen

in each are explained.

Processes
In the study of how systems are built, it has been recognized
that three different processes exist. Bersoff, Henderson, and Siegel
(Ref 8) label them as: N
1. Planning, direction, control.
2. Execution.
3. Evaluation.

Planning, direction, and control is done by the managers. As the name

suggests, it involves developing a plan of attack, telling who to do
what, and continually checking that the plan is proceeding as

expected. The execution process is done by the "doers,” the people

who actually design and build a system. They include the engineers, S
programmers, analysts, and manufacturers who build hardware. '
Evaluation is done by people who ensure that the system is "good.”
"Good” in the sense it does what it is supposed to do, at a reasonable —

cost, and is completed in a reasonable amount of time. Evaluation

includes the disciplines of Test and Evaluation (T&E), Configuration

.“.‘.,‘4.‘.‘~.‘:.‘~‘.' B PN S T e R - MR

Management (CM), Verification and Validation (V&V), and Quality
Assurance (QA). Evaluation is also known as product assurance.

Most successful projects will have a balance of each of the
three processes. Unfortunately, many project managers practically
ignore the evaluation process and emphasize the execution process.
This philosophy contributes to the well-publicized expensive and
unworkable systems (Ref 9). The APSE 18 being designed to incorporate
tools for all three processes.

In the DOD, the process of building a major weapon system is
rarely done in one organization. Four organizations are usually
involved in obtaining a weapon system. The project is procured or
managed by one Government organization, developed by a private company
contracted by the procuring organization, and is used and maintained
by two other Government organizations. For example, in the Air Force,
a typical alignment is as follows: the procuring organization is Air
Force Systems Command (AFSC) who hire McDonnell-Douglas, the user
organization is the Tactical Air Command (TAC), and the support
organization is Air Force Logistics Command (AFLC). With the
exception of the users, all organizations will be involved with the
processes of managing the system. But the procuring organization is
held responsible for the development of the system and is held
accountable for any problems. It is, therefore, especially important
that they are well-managed. This paper will emphasize their

responsibilities.

..............

e —

A
. :

.
.

.

v s
[A)
»

*,

e T T e T Y e e ey v

R A S A A il e s Jo S e e aren el sn
B A R RN S Eal

System Life-Cycle

From the time a system is conceived until it is no longer

- needed, it passes through different phases. These phases are known as
the system life-cycle. Different authors give different labels to :j;:
each phase, but the meanings are similar. This paper will use the -

Government terms explained in the 800 series of regulations. These

Caae e 4

regulations cover the acquisition of embedded computer systems. Since

the APSE is being sponsored by the Government and is being developed S
primarily for embedded computer systems, this is an appropriate choice.

Before discussing the life~cycle, two terms need to be defined.
The first is baseline. A baseline is a document or set of documents =
that have been accepted and are under CM. It is used as a reference
point for major milestones in the system life-cycle. The second term
is reviews and audits. Reviews and audits are conducted at various —
times in the life-cycle. They are attended by representatives from
the involved organizations and are presented by the developers.
Through the reviews and audits, the baselines and design documents are i
formally accepted. After a review or audit, the committee can either
approve, disapprove, or give contingent approval. In contingent ;-f;
approval, the unsatisfactory parts of the document or product must be
changed by the developers. Table 1 summarizes the reviews and audits
that occur during the system life-cycle. The discussion below
describes a typical system life-cycle. Not every system will fit into
this pattern.

The first phase of the system life-cycle is called the :;fti

% o8 "4 "w"a D IS] Y . et . PP . e . - e e N . . . -

D N N R S U AT I] - L . B P T T P S e . e o

P YR T I T AT U I B U S SO Y DR N E LI TR o, IR IPR A P T T TR “ At e .

LY I W W RS ., Ot e e e e T e T e e Lt Gt e N CUPRPINS N . . R o My e . "e

SV SRR T RS W T LI LIS, T LR I I AT AR et e e e AR AN AT s NS
r ¥ . I PN, ~go N I RO

(P1240-237T

suryeseqg Tewiog

axem3308 jo aseyd 1IpNY
soads ay3 uojjlvIFaUT puR 3893 uofieandyyuo)
Jo s3uawaaynbax syl jssuw pue pajaydwod guranp) juomdoTaAdp TeUOFIOUNY
U33q 2A®y SIDdD Y3 IBYJ 3IBPITEA VN 3aTeds TNy ul puy Vod
(3T°40-33FT 2aBM1JOS8 MITADY
S9DBJIDIUT MITAIY jo aseyd udysap udysaq
dv 9ya jo Sutanp) jusmdoTaA3p Te21111D
sjuswaxInbax 9yj siadw USTESOP 1BY] MITAIY V/N aTEOs TINJ UF ¥YAd I3IV b (160)
sjuswaxfnbax (9T242-331T @aemijos MITADY
Sutwyl ‘sITITTIORY ‘4L3Fanoes yo aseyd sysfTeue udgsaq
‘gposu aseq BI1Ep ‘SpIsu 98eI03I8 MITAIY Sutanp) jusmdoTaA3p A1eugwyraig
890BJI93UY PUB MOTJ TBUOTIOURI MITAIY V/N 9Teos TIn¥ uf L1aey dad|
87013102
juswadvurw R ISTNPIAYDIS SATILIUI] MITAIY
pu® popaau SI3TITTIOeF ® 93enlue] udysaq
paweu sS1)dD walsis
sjudwaanbal waisds jo MaTAaaAQ av aseyd uofiepyIRA JO pUY ias
MITAIY
s3juawaafnbay
a1e sjuomaafnboa wolsds jeum MaTAIY wa3Iskg
sjuawaafnbaz woe3isis ysyrqeisy a4 aseyd Tenidaouod jo pujz wis
31BM130S ay3 Jufjuxoouoc) a2soding UFER PaysITqeasy po3Ionpuo) 8T 3IT UIYM 11PNV /MITAIY

S1TPNY PUB SMOTAIY JO MITAIBAQ .

-
- g g

L'y

I IT9VL

..o
IR S
PY L)

IS
.

o

.._\
oo .

TV

— o,

—

Dot ol ol il sy

P

TPV

' UWOTIBITITTEM)

ﬁ.. sjuawaifnbaa ¥Dd Ul paulqmod 3q TeWI0]

s 30813U00 JY3 TR S3I99m wWAI8Ls HOIYH V/N jouued 3T JT vHd I931FV W4

g TPV

uofleAN3TIu0)

! UOTIBIUAWNDOP TeOTUYodl YIM Teo1sdiyd

§9318® [DdD 3ITINQ S® 3yl 3Byl AJTIsA ad Vod 3913V vod|
91BM3J0S 8yl 3uruladuo) Isodind UTel PRuys1Tqeasy POIONPUO) 8T 1T USYM ATPNY/MITAS

g aufTosed Teuwiog

(psnuy3uc)) I FIEAVL

RTINS, YOS

conceptual phase. During this phase, the basic purpose and
requirements of the system are defined. The System Specification is
written. This document
« « . states the technical and mission requirements for a systenm,
« « « defines the interface between these elements and specifies
system level requirements (Ref 4:68).
It also includes the general requirements of the software such as the
language it will be written in and what standards it will follow.
This document will become the Functional Baseline (FB) after it is
accepted by the System Requirements Review (SRR).

The second phase of the system life-cycle is called the
validation phase. During this phase, the basic concepts of the system
will be validated. For development purposes, at this time the system
splits into two major parts: software and hardware. Each major
software part of the system is called a Computer Program Configuration
Item (CPCI). While each major hardware part is called a Configuration
Item (CI). For each CPCI and CI, a Development Specification is
written. It

« « o« specifies the performance, design, and validation
requirements for a CPCI in operational, functional or mathematical
terms and in sufficient detail to serve as a contractual
definition of both the product to be delivered and the formal
process by which it is validated (Ref 4:72).
After they are accepted through the System Design Reviews (SDR), they
become the Allocated Baselines (AB).
The third phase of the system life-cycle is the full Scale

Engineering Development. During this phase, each CPCI and CI is

designed, tested, and built. They are integrated and the whole system

10

4

Fon

1 AU

B RN .

v .
EU TR TR TR 1 1 e . "
a2t at L. s a'a "

Y ‘)

et Ce e L e T U L T T . [R T e s e
L. P A N L . T e T Pt ce e e e e
AT . R T S IR T LN AP DL AL Y et et NS L T e
o o e e et - gt e o % X o e Se e Sy 4 N e T
Y shessfesnbanh .h dhavfanfuahede it oo iobtoafd Sothl Pl PR BT N AT WY UL B RN the WP

N N T N T W T W T T N —_ -

is tested. The software has its own life-cycle. The phases are
Analysis, Design, Coding and Checkout, and Test and Integration.
During the analysis, the preliminary Product Specifications are

prepared. The Product Specification gives the detailed design of a

CPCI as required by the AB and is usually written in three stages.
They are:

1. A preliminary version defines functional flow, storage
allocation, control functions, and data base structure sufficiently to
guide detail design.

2. A complete code~to-version defines the entire design in 1
terms of detailed technical descriptions and flow charts.

3. The final version describes the coded version of the CPCI,

includes actual timing and storage values, and includes or references

a complete source or object listing (Ref 4:75).
The Preliminary Product Specifications are accepted through the
Preliminary Design Reviews (PDR). During the design phase, the

Product Specifications are updated to item 2 described above and

accepted through the Critical Design Reviews (CDR). During Code and
Checkout, the code for each CPCI is written and compiled. During Test
and Integration, the CPCIs are integrated and the system is tested.
The final Product Specifications are also written and, through a]
series of reviews and audits (Functional Configuration Audit (FCA),

Physical Configuration Audit (PCA), Functional Qualification Review

(FQR)), become the Product Baselines (PB). A PB includes the computer ;f;

1isting of the CPCI. S

11

. o
Ala s

.....

The fourth life-cycle phase is called the Production Phase.
During this phase, the system is built and delivered to the user. The
last phase in the system life-cycle 1is the Deployment Phase. During
this phase, the system Is transported to its operational site,
installed, demonstrated, and tested. The Deployment Phase may begin
before the Production Phase is completed. If necessary during the
Deployment Phase the system is modified or enhanced. The system
remains in this phase as long as it is operational.

As a summary, Figure 2.1 shows the system and software life-

cycle and the major events that occur during each of them.

12

¥
MORIRY

T

.

ny

e~

R

a19£)—33TT wWI38LS

*1°7 814

9T24)-3J T dIBMIJOS

ano
-9y

uorivI8ojur
pue 1897

pue
8utpo)

udysaqg

sTsATeuy

p: (0

a0

dad

Vod
Void

Juam
—Kotdag

UoT3
-onpoig

jusmdoTaAsag dTeds TINJ

UOI3EBPITEA

Tenadasuo)

gd 9bd
vod
vod

av 9ds

g4 WS

. .
[TV PR S

Ancdar ot

13

VR N

R

-
.

dT0AD J4IT WHLSAS

PGP

Y

N\ R

I11 Software Confi&uration Management

Introduction

SCM is an important part of successful program management.
Through SCM management can help reduce the cost of the system, ensure
that it is delivered on time, and does what the user expects it to
do. Current SCM procedures are a combination of manual and automatic
data process’'ng techniques. The discipline is nonstandard. Many
system development shops have excellent procedures, while all too many
have none at all. The success of SCM is very dependent on the
knowledge and capabilities of the individual manager. The APSE will
help correct this situation by offering an environment that automates
many of the SCM tasks and makes the other easier.

SCM is defined as

« « o the discipline of identifying the configuration of a system
at discrete points in time for purposes of systematically
controlling changes to this configuration and maintaining the
integrity and traceability of this configuration throughout the
system life-cycle (Ref 8:20).
As stated earlier, SCM is divided up into four functions. They are
Configuration Identification (CI), Configuration Control (CC), Status
Accounting (SA), and Configuration Auditing (CA). In this chapter,
for each function the following information will be given: the

definition, why it is a necessary part of SCM, when it is done in the

life-cycle, and how it is currently done.

14

.......

R T U T .o . e . D e e e
. R T P IR R S e e S T S B LT, P
v, W LT T et N et T e = . BRSPS AP N -, . .. R I T SR S Tl N
DA PR PPt P P P R R PR S L L R TR o) st et SN o e te" .t et et K
PN WP I EEN o (W acsa o POV LIS FAFQC ViGN LSS L LSys P Ve L G ST L . RS ey

A L e . IS B A e A S O CYPR)

BT mT T = ~ T T A v T Can R PR e e Svan s e e e e T S T T T T Y “1

s g
}

NRAENS - S

———

Configuration Identification

Configuration Identification (CI) is usually defined as the set
of technical documents that define the functional and physical
characteristics of a system. Government documents specify three
documents that are generally used. They are the Functional
Configuration Identification (FCI), the Allocated Configuration
Identification (ACI), and the Product Configuration Identification
(PCI). These documents are also known as the to-be-established
baselines. As stated in Chapter II, the FB is a system specification,
while the AB and PB are development and product specifications. CI
also includes the process of identifying and labeling the software
parts of the system.

Each major software part of a system is called a Computer
Program Configuration Item (CPCI). All the CPCIs together form the
software part of the system. The CPCI is the most important component
of the software items because it is controlled by SCM. Each CPCI goes
through the software life-cycle. Therefore, each has its own
allocated and product baseline. A change cannot be made to the
requirements or design of a CPCI without formal approval. Regular
status reports on each CPCI must be issued by the developers and each
CPCI will undergo formal test procedures.

Besides the CPCI, other levels in a system are designated. From
highest to lowest, the hierarchy is as follows:

System - Includes everything needed to complete the task

required. The system includes both inanimate objects and personnel.

15

L A I i R R S PR P P R A N R L
O I I P) B A o et Y A PR L P PR A PG S S
L R LI VNI Nl A TR ISR VAT A TIPSl S AR Sl YA et atsta et tat et ittt s

-l

1
‘o h

PP A
PP
DL S

S AT lane Aiating T W W PR r— T T e g - e ———

B

System Segment — It is part of a system sometimes referenced as

a subsystem or functional area. It may contain more than one

T
. - .
t

functional area and consists of CIs or CPCIs or both. It is used when:
1. A system is purchased incrementally.

2. A part of an existing system needs revision.

3. A system is divided up for different programming offices.
b CPCI - "An aggregation of computer programs that satisfies an
*; end-use function and is designated by the Government for CM" (Ref
2:52).

Computer Program Component (CPC) - A functional or logical part

of a complex CPCI. It is used for ease in explaining the design of a
complex CPCI.

Routine - A subroutine of a computer program. Large and complex
systems may require more levels. Small systems may not use them all.
When a system is broken down to the routine level, a tree chart can be
drawn to show the structure of the system. An example is given in
Figure 3.1. N

CI is a necessary part of SCM because it helps management
control the software. First, through the baselines, the state of the
software can be defined at any time. Second, labeling gives a point
of reference to everyone involved in the project.

The selection of the CPCIs for a system is not a trivial process
and will vary from project to project. If a great amount of control

is needed, then more CPCIs will be created. A large system that deals

with life and death situations will need more control than a small

16

e '."'.".,‘-".:“'". Tt e e e e e e e e e e T e T T e e e L e e T L T e) s N e T T e T e e e
PR A S S S L) . B T AP R SR P L R A R U T SRR e S S el L S S A R S S S
DONCNE SV PR PELIPEPL LIS SO Sl S T . S L R Pyl U, Sy i S0y i s VY DA AT DI DRI DA SR DR T DR I SR R I DATIATIIL I AL WAL TR S WAL AR PSS

T T T T

........
D

-
. .

SYSTEM

SEGMENT

=T

cec]| [cec] [cec] CPC (Ccec]

ROUTINE 1 ROUTINE 1

ROUTINE 2 ROUTINE 2
ROUTINE 3

Fig 3.1. Structure of a System Given in a Tree Chart

routine project. In determining the number of CPCIs, trade-offs have
to be made. Too many CPCIs and the SCM task becomes too complicated
and unworkable. But if too few exist, there will not be enough
control and the SCM goals will not be accomplished. The solution is
usually to have different size CPCIs in the system. Small CPCIs, such
as a single routine, will be chosen for critical areas. Large CPCIs,
such as a functional area consisting of many modules, will be used for
more routine areas.

The ASD, Airborne Systems Software Acquisition Engineering

Guidebook for Configuration Management ASD-TR-79-5024 (Ref 2), gives

17

L T g Y S P,

S L A
W » - .

e e e e e e T U AL e T e T e e e e e e
B Rt SRR SR Pl ST I SV IR NV SV SV B0 P Sl Al I PLIV L LN Y S PR TS AT TR A 0 SR D R LD . i P, S, St S WA

(3N
e

X

1
4
O P Lo S,
LN L] Lo ’ o,
FOVar DO PN PR N

a
ey

I

.
3
L
i
T .q

ST
TS)

ad

Al

b St Calac DT —— - Al P oy \
St it — T \A ARSI A AP A CR SR S i e Sl i A A S AP0 S0R SR Sl st oe A o Eai

-
-

some guidelines in selecting CPCIs. First, one must identify the
software processes that are needed to use and maintain the system over
the entire life-cycle. The processes will include operational, ;};;

support, and test software. Secondly, one must group these processes fifj

into CPCIls. For example, Table II lists some of the guidelines used
to choose CPCIs by ASD. The CPCIs of a system will be suggested

;‘ during the conceptual phase and formalized in the design phase. The
%: gselection of CPCIs is not generally done by the SCM people. It is

usually done by the software engineers. The SCM people will check to

ensure the CPCIs are broken into logical parts and are complete. The

CPCIs are the basis for SCM.

.rw’rr“‘w’
S e
»
|

Identifiers

After the CPCIs and other components are selected, they and
their associated documents must be labeled with identifiers. The
system cannot be controlled unless its components have names. e

Different kinds of labeling systems exist. By Government
standards, an acceptable method has identifiers that have system
unique names for each component. The software component must be able
to be filed and retrieved on a computer system. Therefore, the
identifier must have at least a portion that does not change. Other

favorable features for identifiers are variability, traceability,

functional significance, pronounceability, and compactness. l-\;
Variability means that the identifier has a portion that can change to
reflect changes, such as new versions. Traceability means that the

identifier tells where the component came from. It could identify the

18 S

r OEeare RN At SR R A A R L I e S et I - M e S A & AR T T T T

TABLE II

Characteristics Used to Group Software Processes Into CPCIs

Guidelines for Grouping Software

e Of the same type such as operational, test, or support.
e To be used on the same computer.

® Able to be developed and tested by one contractor.

® Needed at the same time in the life-cycle.

e Of the same Importance to the system.

e Of the same difficulty to develop.

® In need of the same level of developmental control.

e Small enough to be monitored by one person.

19

L T S S T T P PR NI e et
O TR IR P SR S S P P P R TP L P S SR B N e, AT L T e
- ER R e R L P <. CAS RN T Tl T T e

. DT Bl - DTS
2 s e 2 &l

Ny % L el e el e
DI L L T
PRI TP NI T I G T BB ISR Tt SN0 Tals B B N PRI I L I P R AL IR Iy DR A Y A TG VA SR A A

. ',*r'r.f;,'..ﬁ!"j:‘_v m'_ —— vv“:-

contractor or the position in the structure tree. An example given in
Reference 2 is a four-character identifier where the first character
indicates the CPCI, the second the CPC, the third the module, and the
fourth the routine. Functional significance means that the identifier
indicates the function of the component, such as SINE being an
identifier for a routine that determines the sine. Pronounceability
is a good feature because a pronounceable identifier is easier to
remember. The last feature, compactness, means that there must be a
limit to the length of an identifier. The restrictions may come from
the operating system, Government standards, contractor standards, or
administrative needs (not too cumbersome to use). No one method of
identifying software components will be able to have every feature
mentioned above.

The identifying and labeling of the CPCIs is done in the
conceptual phase of the system life-cycle. They are accepted in the
validation phase through the SDR and documented in the Allocated

Baselines.

Configuration Control

Configuration Control (CC) is the process of controlling the
changes made to the software or the documents in the system. CC is
involved only for items formally under SCM. For example, a change to
a sanctioned baseline, a test procedure, or a technical manual are
subjected to CC. Changes result from new requirements or errors found
in the system. CC is an important aspect of SCM. Through its

methods, whenever a change is made to the system, everyone involved in

20

N T T Tt T Tt e T e Tt P U ST L P UL ISP JUSR SCEL SR S T S IS TR

N

Te . Lt

| PR

L AT I LA S IR AR AU R P - . PR S YA PR I DA LIPS AR L IR LA I BT AP AT L L A LR
. . .t A st ta LS AT < . B [- gt 2t e e s e S
P I I I A A I L A P I A A S I T) PRI Vet PPN, PO S PO P AL . S U P I Bl il T Lol Ul Tl YhV GHEP LI b WL Yt ThaP ST 1

the system is aware of it. No one can make a change independently to
any information under SCM. Everyone is aware of the latest version of
the system. All of the documents reflect the current software. CC is
done in all phases after the FB is established.

CC is accomplished through three methods. They are

documentation, procedures, and organizational bodies.

The main organizational body for CC is the Configuration Control
?:; Board (CCB). The CCB is a group of people involved in the system who
make decisions concerning the project. The CCB will approved the
changes made to the system. If contractors are involved in the
k‘A development of the system, two CCBs will probably be formed, the
s procuring CCB and the contractor CCB. The procuring CCB is set up
during the validation phase. Thelr responsibility will be to approve
changes to the baselines. The Program Manager (PM) is usually the
chairman of the procuring CCB. Other members include the top managers

in each functional area, and if it is a Government procuring CCB,

representatives from participating Government agencies. Specialists <tia
and contractors may be invited to attend procuring CCB meetings as
advisors. The contractor CCB is similar to the procuring CCB, except
the members are from their firm and are concerned with the items they
are developing. They will be mainly concerned with technical
documents.

The CCB is responsible for both hardware and software. If the

system being developed is large, a separate CCB for software and

hardware may be provided. If the system is being developed for a l§:§

21 :.. '_::

A T T et e e e e e et et e T e e b e .
. e T T e e e e T e T T e Y T P S L L

AN B . IR I A S L L A P N . SN D RN - SCR L AP

. . . AT A e R A A R A PN R ~ .

RN SR SRR R WAL I C LR PO P P T A AL AR AT A e e s et s \.\k‘ RS OB I I RO

it S A At bt Sk Y T T — T —— : —r——— T Y

third party, a CCB will have to be set up in that organization to
i& monitor changes made to the system after it is operational. T
The second method of accomplishing CC is through procedures.

Procedures are the methods approved by the CCB to make a change to the Gj}f

system. Procedures are not firmly set. It must be remembered that
each CM plan is tailored to each project. SCM is not suppose to
encumber the project, but rather improve the quality of {it.

The final method of CC is documentation. Forms are the most

common way to document. Many forms are used by the Government and
private firms. A few of the most common will be discussed. The
k‘ Change Request (CR) is a form used to state that a change in the -

3 system requirements is desired. If a user or auditor discovers a

'3 deficiency in the system, he submits a different form called the
Software Incident Report (SIR). Both the CR and SIR are analyzed by
the developers. After the analysis, they decide if the change is
really needed and/or beneficial. If it is, an Engineering Change
Proposal (ECP) is submitted to the CCB. The CCB determines if the i
change will be rejected or accepted. If it is accepted, portions of

the life-cycle will be repeated. Rejected ECPs are filed for further

reference. Figure 3.2 shows these procedures. Appendix A gives an

example of a CR, SIR, and ECP.

CM Plan
Although not a direct function of CC, the CM plan is discussed
here because it 1s a controlling activity. The general plan should be

formulated during the conceptual phase. If the system consists of

22

e e e e ap e A taetate e g a e .
R T T e R e e T T T St et T e e e e e,
-

R . et e e
R OO ORI I A PR T o B T T JVAT A PRSI
AP IR TV S NI T AN Tl Tl Dol T it TN Yl TN W TN T, I¥ BeP BhP N P RIS LI T W R T T I W N PRI AT AR R T

Approve

Notify
Developers
to Make
Change

F; Perceived Change in
. deficiency the system
- in the system desired
-
' Write ~/ Write
= SIR CR
Notify
Writer of Developers
SIR or CR Disapprove Analyze
Approve
Write
ECP
File CCB

Disapproval Analyze

for Future Disapprove

Reference

Fig 3.2. Typical Steps Used to Make a Change to the System

23

) S P TR S S
. . RPEANIL A IS
e LA A adal st e sl 2

M, AT e T et e T e e . At et et et e .

Qe T N T e et T T T LT LT T e T e e e e -. -
LS VSN LIS Y'Y VY VS VL TAFvT TV . PR PO LTS . PVOFN Y Vs Veare. |

o

- P
.

-
-\h
- ,L

&

T T —r— L T e euy M BRI e an e e o e e e —

both hardware and software, separate plans can be made early in the
full scale development phase. According to Reference 8, topics that
should be covered in the CM plan area:

1. An overview of the system.

2. CM organization - Besides the four functions, the role of
the CCB should be discussed.

3. CM tools - This part should describe the forms that will be
used, labeling conventions, and any automated aids.

4. CM procedures - This part will state what will be done
during each stage of the 1life cycle.

5. CM resources - At this time, the money and staff needed will
be given.

In the Government, the CM plan may be given in other required
documents. These documents are the Program Management Plan (PMP), .
Computer Resources Integrated Support Plan (CRISP), Statement of Work
(SOW), and the Contract Data Requirements List (CDRL). The PMP is

written by the Program Office early in the Conceptual phase. It is a

directive for everyone involved in the system on the overall
acquisition plan. It is changed whenever necessary. The CM plan is
developed following this plan and, when approved, may become part of
it. The CRISP lists the computer resources needed throughout the
system life-cycle, including CM resources. The SOW is a document that
defines the developers (contractors) tasks to complete the project. -

The CDRL lists all the deliverable contract items. Each item in the

CDRL has a Data Item Description (DID) number. The DID refers to a

24

- P R S P .- . e e
T T e e e e N e e e et e e e e e e NI e e e e e N e e e
b B PPN AL IR S A R G 200 BT ST Bl B I TR0 Wl R N U0 U B . B 1P B O P B T MO NP PP

Government accepted outline for the specified document. Appendix B

i gives a DID for a Software Configuration Management Plan.

Status Accounting

Status Accounting (SA) is a process of recording, storing, and
reporting the history of a project. The history tells when, how, and
why the events happened. The history is important for many reasons.
First, it can help new personnel learn about the project. This 1is
especially important if they join in the middle or end of a project.
Studying the history of a project can also help people learn about
developing software. From studying past projects, they can try to
repeat the good features and avoid the mistakes. Also, cost
estimates, staff needs, and time schedules can be made from studying

past projects. Lastly, a log of the history can be used for

preventative purposes. From past experience, areas that have been
shown to cause problems can be corrected before the problems develop.
SA is done during all phases of the life-cycle. SA's importance
increases as the life of the project increases. Frequent personnel

changes are a common problem in the military environment. During a

project that has a long life span, generally more people will come and
go. SA will help them become part of the project. Also, SA is more
difficult when the project is very complex. The process of storing
and recording what happened and why will be harder. An effective SA fdﬁf

plan is a major factor in successful SCM.

. o
» e
AN

As stated before, SA involves recording, ctoring, and reporting

data from the projects. Exactly what should be recorded depends on

B .
WYY WP WL

25

r
RPOR

L T R T o T R A S S S S S P ML SRS S S S St T ATTS s p T L . SR
-------- STy e T e e T R A T R T T A P L S Ve

PRI . " «" . va B PREY P T L . ¢ o LI Se et ata™ .o
LS IR PP AP P .) PPRCRPI WA s N WA P W S AR SR R N W PN GUE A WSROy VRPN . AT PRE WAL i i VAL W P U W W WL WAl v AL WA)

— _~.v-v>..".'”'k.. /R A Rt i Sttt Ry)-:-f DA SR ACIIR A S S e P I - AmDavac - - " ‘]
“j

the size and complexity of the project. It is better to record too
much than too little. Bersoff, Henderson, and Siegel (Ref 8) suggest,
as a minimum, it is necessary to record the events required to
sanction a baseline and the events following a CR and SIR. Figure 3.3 %ii

gives the typical events recorded following a CR. Some projects will

need to have a detailed description of what, why, when, and how for . %
each event, while other may just need a what and when. What is 7:;
required should be stated in the CM plan. This data is stored in -
files. The storing and recording will be done manually or '
automatically in a Data Base Management System (DBMS). For Government " ﬁ

agencies, DODD 5010.19 states that

« « « automation of status accounting shall be employed only when R
the volume of data or rapid response time makes it necessary and e
it is economically feasible (Ref 2:112).

With either method, the life-cycle of each CPCI should be traceable.
The last function of SA, data reporting, is the method used to

keep the project personnel informed about the project. Bersoff,

Henderson, and Siegel (Ref 8) suggest the following reports be made. -
They are: {l
1. CCB, Review or Audit minutes. ;ﬁ
2. Periodic baseline status reports.)
3. CR and SIR status reports. X
4. Executive summary of SCM activities for management review. %tiﬁ
5. Baseline releases. -

6. Ad hoc reports generated by request.

Government documents give specific names to the documents that will be

26)

T e e L N e e e e ST S e _'f_'.'_‘,'.'."‘.' RO I I '..-_.- o -_". LT e,

ST A I S S TS P
VPR L W W W PR A W O IR W R N s

i S i Sl gt el el AR B in ot Baal Gt e aene aenas

CR sent to

ECP

developers

ey

ECP sent to
developers

Prepared

CCB
Analyzed
ECP

(3)

CCB
Decision

or filed
(5)

(4)

For each event, record what it is,
why it was done, who recorded it,

and the date it was done.

Fig 3.3.

27

Typical Events Recorded for a CR

WP ITSEPY

'
. e
0 te et

’
¢ .l

"'
b

.
3

e
‘a's’s

-

. e e Carratamaan e
. e Tt e Tt ettt et et P Tt et et
et e e T T e e T T T e e T T e e e e T T A e L e]
PR N, SRy, S T) bR Y M P Y 3 a > B S N P Jp Y P Y T, ”_1 RIS DL L

T R TR NIRRT R e A e — T e —— v

produced from the SA activity, but the information is basically the

-1

same as the above list. All reports that are required should be

stated in the CM plan.

Configuration Auditing R

The last function of SCM is Configuration Auditing (CA).

Government documents define CA as the FQR, FCA, and PCA. These audits J
- are designed primarily to ensure that the software parts of the system - 1
! (including documents) do what they were designed to do. As stated in

Chapter II, these audits are performed near the end of the Full-Scale

Engineering Development phase. They are first performed at the CPCI ;
»

level and then at the system level. If an error is discovered, the
auditor must go through the formal CC procedures to implement a change.

Bersoff, Henderson, and Siegel (Ref 8) define CA in a different ;;;;

ml
-

manner. Their definition states that audits are done throughout the
life-cycle and preferably done by independent auditors. The
Government considers this to be part of the Verification and ;zg;%
Validation (V&V) process. Table III gives an overview of what V&V is SR
and is not (Ref 7). A |
The Government recommends V&V be done only when it is
"economically justified in terms of life-cycle benefits" (Ref 7:19).

The following examples were given as projects that would justify V&V: . VQ

)

. 1. Software with a high cost of failure (e.g., space systems).
2. Software for which the cost of error detection through
operational use 1s greater than the cost of audits (e.g., aircraft

operational flight programs).

28

e
T
PSPPSR §

N
<9

..... e
P R P L
S A R AL R AP

ey e — T

TABLE III

Verification and Validation (V&V) Characteristics

Independent Verification
And Validation Is

Is Not

An independent technical
activity

Aimed at product evaluation
throughout the life-cycle

Identifying errors early

Employed to ensure that all
system and subsystem
requirements have been

fulfilled by the software

Complementary to the
development effort

Designed to help the
developers

Additional insurance

Conducted by the personnel
that develop the software

Checking the code during
Development Test and
Evaluation (DT&E)

Identifying errors during DT&E

Employed to ensure that only
test requirements of the
computer program development

specification are met

A duplication of development
activities

Conducted to harass the
developer

A guarantee of success

3. Real-time software which must work under all scenarios

(e.g., nuclear safety programs).

Many people disagree with the Government and feel, despite the high

cost, V&V should always be done.

The money spent up front will pay in

the long run by producing a better product. The advantages include:

1. Improved reliability — Fewer errors are found after the

system is operational.

2. Greater visibility - The chance of success is increased.

3. Reduces the cost - Errors are found earlier in the life-

cycle when they are easier and cheaper to correct.

W e et T e
Sale ety tmtatat

P T -
PRI TP CYC T I WY ¥

e e ateddhndonasth,

',
R
Al S A

e e a0
P & 2" a3 ¢

PEANEE R NN |

TR TR T TS L R TN TR R T NS Y YT wew T w e Yww w e

Accomplishing any kind of audit is a complex process that needs
to be managed by experienced people. It is done using many techniques
and tools. Table IV gives a list of some of the tools and

techniques. Explanation of these is beyond the scope of this paper.

o

TABLE IV

List of Tools and Techniques

Tools

Accuracy Study
Analyzer

Assembler

Automated Test
Generator

Comparator
Compiler

Compiler Validation
System

Consistency Checker
Cross—Assembler

Cross—-Reference
Program

Data Analyzer
Decision Tables
Decompiler

Design Language
Processor

Diagnostic/Debug Aids

Driver

Dynamic Analyzer
Dynamic Simulator
Editor

Engineering (Scien-
tific Simulations)

Environmental
Simulator

Flowcharter
Hardware Monitor

Instruction-Level
Simulator

Instruction Trace
Interface Checker
Interrupt Analyzer

Logic/Equation
Generator

Overlay Program
Path Analyzer

Program Sequencer

Relocatable Loader

Requirements Language
Processor

Requirements Tracer
Restructuring Program
Software Monitor
Standards Enforcer

Statement-Level
Simulator

Static Analyzer
Test Beds

Test Drivers, Scripts,
Generator

Test—Result Processor
Timing Analyzer
Trace

Units Consistency
Analyzer

Workload Analysis
Aids

P P I

SRR R IR MO A W

L R A R S ST N

ot L o

30

St

TABLE IV (Continued)

Techniques

Algorithm Evaluation
Test

Analytical Modeling
Capability Matrices
Code Inspection
Correctness Proofs
Design Inspection
Emulation
Equivalence Classes
Error-Prone Analysis

Execution Analysis

Flight Tests
Functional Testing
Logical Testing
Modular Programming
Path Testing

Performance
Evaluation

Post~Functional
Analysis

Process Construction

Production Libraries

Prototyping

Simulation
Standardization

Static Analysis

Stress Testing
Structured Programming
Symbolic Execution
System Simulations
Top~-Down Programming

Walk-Thrus

Summarz

SCM is an involved procedure that involves many techniques.

Software Configuration managers deal with both the management and the

doers.

product is being produced.

of the project.

They watch over the project to ensure a quality software
They have been described as the policemen

As a review of the SCM process, Figure 3.4 gives the

major SCM milestones that happen in each phase of the life-cycle. It

should be noted that these milestones are for the "average"

Government-sponsored embedded computer system.

SCM for smaller

software projects may not include all of the milestones.

o .
- P L
CHMT I SIS S LS PR W T

31

............

3T2£)-23 7T Wa1sLg 3yl Ul sauoISATIW WOS I0fBW °*H°¢ 3714
V) Jo 31aed ssadoigd - O
vS Jo 3aed ssadoig - v
20 30 31aed 8s9001g - g
ID 30 3aed ssadoig - @
sjuamnoop
paierex
R wWa3}sfs uoTI®Bd gV 1STT
21epTTEBA ~¥3710eds -qe1s3 o3 y¥dse
% AJTIoA 3onpoad uoFled ueTd WO utdsgy
01 Whd Kaeu —T3103dg uaIIFaIM
vod ‘vodOo -TuETa1d 3onpoad | uoFIBITITOadg dn 3135 @D«
puooas Azeu juamdoTaaraqe
gd ysylqel USTTqelIs? -TuiTa1d g4 4sIl
-89 03 ¥JI0 03 J@oe | ystTqels® pol1oaTas sIDdDe | -qriIsS? 01 WiSe
‘wa3sis jo ‘¥Yod ‘vode 01 yade
aoueuajujem 103 PoI3T2 peiuamaTduy uajlITam
WJS 103 1STX® auop <m4 suop ST -uapT ueTd WD mm.gwwuouaq UOTIEBIT]
gainpacoid dansujy €9D) aiansujy 29 0.H=mdm-* sT0doe | @3ordwony Tm PUBR ‘yo 00y | -1oads waisdge
LY ECEE-ERLNS InoHooY)
juauiordaqg pue Supisa] pue 3uipo) u8fsaq gTsATeuy
aseyq aseyd
uotT3IOoNpoId aseyqg uawdororaq Bupasoutduy oTeds TINd UOTIBPYTEA Tenidaduo)

32

atata

-

.,

‘A ’n "2 “a

L N
o AL R Oy
.L..L—P;LJ_P‘*_‘

S

CH

IV Requirements

Introduction

This chapter will present the requirements of the Ada
Programming Support Environment (APSE) SCM tool. 1In addition, the
specific requirements of the SA part of the tool are given. Prior to

this, an overview of the APSE is presented.

Ada Programming Support Environment (APSE)

As stated previously, the APSE is a DOD-sponsored project to
create an environment to produce software primarily for embedded
computer systems. A major feature of the APSE is the new computer
language Ada. Ada is designed to be the single computer language used B
in DOD-developed embedded computer systems. Not only can Ada handle
the special requirements of embedded computer systems, but it offers
all the conventional capabilities of a general purpose language. An
important feature of the Ada design 18 that it emphasizes program
reliability and maintenance. This is achieved by choosing a design
that stresses program readability over ease of writing code.

Although Ada is an important feature, the APSE is more than a
new computer language. As the name suggests, it is an environment.

The philosophy of the APSE design is explained in "Stoneman.” The

design will be based on a few simple concepts which are

« » o straight forward to use and understand” (Ref 10:14). The APSE

33

ER I T
!

P e v . e T e ey e “ . - LI T PR

A R T R L R B R A I ot - ; et

o 5 S, . . LI O L AR f .. T . .
[N AN GRCAU AT A K PRSIV RV YRE VAL U WA R R R VR R N T A AT e PRI NP P PR WA S

e

[}

g .
A

'~

LIS S e T
PSRRI DA

A AP A e M e e R

will support all project members throughout the entire life-cycle of
the project with a complete set of the integrated tools. All the
tools and user programs will be written in Ada. They will be machine
independent. As much as possible, the APSE itself will be portable.
Finally, the APSE will be a dynamic system which can always be
improved upon.

The APSE will be composed of three basic parts: the data base,
the interface (user and system), and the tool set. The data base will
hold all the information concerning a project during its entire life-
cycle and will be a key feature of the APSE. The data base will store
uniquely named objects. Objects, as defined by "Stoneman,” are
"e o+ o identifiable collections of information” (Ref 10:18). Typical
objects would be a test data file, a documentation file, or an Ada
source file. Different versions of each object can exist. Different
groups of objects can be put together to form "software
configurations.” A configuration is itself an object; thus, different
versions of it can exist. Large groups of objects, such as all
objects pertaining to a project, can be grouped together into
partitions. Access controls can be used on both the object and
partition level.

The data base will permit relationships between objects. The
user will be able to travel through the networks formed by these
relationships. Each object will be supplemented with a minimum of
history, categorization, and access attributes. The user will be able

to access both the information in the object and the attributes. The

34

e w T e e) . . . et et o
acal saCatio Ca oz aaa s ony” 0 oy e S A e N N AT et e A e e

R I T T - ' '.-_'.'.‘- T TN S e rt et el et At e T e e et

......
@ e

history attribute contains all the information necessary to maintain a
complete history of the object. The history attributes will be the
basis for configuration control. The categorization attribute will
contain the category of information contained in the object. This :igf
information will be used to protect the integrity of the object by

indicating which parts of the object cannot be changed by any

operation. The access attribute contains which executing programs and
users have access rights to the object. In addition, the data base
will be able to generate reports and system statistics.

The second part of the system is the interface. The user
interface will allow the user to use the APSE tools through a command
language. The command language will be machine independent. The

system interface will allow intercommunication among the APSE tools.

The last major part of the APSE is the tool set. It will
provide a complete set of integrated tools for Ada program
development, maintenance, and configuration control. Like other parts
of the APSE, the tools are portable, written in Ada, user-friendly,
and open-ended. The other requirements will be discussed in the next
section. Some examples of APSE tools are the compiler, editor,
debugger, and linker.

In order to achieve the goal of machine independence for both
the user programs and tool set, "Stoneman” defines two lower levels in
the architecture of the APSE: the Kernal Ada Program Support
Environment (KAPSE) and the Minimal Ada Program Support Environment

(MAPSE). To explain these levels, "Stoneman"” gives the diagram shown

35

; - A,
- - - ..
. Qv - " .

- Ca " \' .-" "o - - - . -’ . - -® ..- .‘. .-...-..‘ " -" y .-..'--.\ ", - - .. -. L .I- * ...N.-“..... “a .-t “~ “e % " e
EoP WA 2 PRI wP P sl VR R A L N I‘R‘IAAANAL‘J-LJML" L ARV AT WA W RS WAL S W VYA SR S A DR

in Figure 4.1. Level O is the only level that is machine dependent.
It contains the host hardware and software as needed. This part is
kept as small as possible in order that it can be easily modified to
fit any machine, allowing the APSE to be as portable as possible. The
KAPSE 1s a key feature of the APSE. It 1s similar to an operating
system. It contains the program execution facilities, the data base,
the data base management system (DBMS), and the interfaces needed.
"Stoneman” does not require the KAPSE to be written in Ada if it has
to make use of the local operating system, filing system, or DBMS.
APSE portability would be lessened if it is not written in Ada. The
MAPSE is a smaller version of the APSE. It contains the minimal set
of tools needed to run an Ada program. The specific tools are listed

in Figure 4.1. The MAPSE is written in Ada. The APSE is an extension

to the MAPSE.

SCM Manager Requirements

"Stoneman” requires that the APSE includes a configuration
control system as part of the tool set. The guidance given in
"Stoneman” is of a very general nature. Specifically, it states

The history attributes provided at the KAPSE level record a
variety of software configuration relationships. Tools to help
structure these relationships, modify them, indicate the
ramification of (potential) modifications, etc., are appropriate
in an APSE. 1In many systems, the facility will be provided,
subject to suitable controls, to archive or delete superseded
material in the data base or to rederive material subsequent to
and affected by changes (Ref 10:42).

The actual design and how it will be implemented is left open.

Since the software configuration manager is part of the APSE

36

..................
W, e, e L, O P IR St YA SIS S SC RSP ST U SNt S AT S)
ot . IS

’ Yfl,vvr—T—fvvv

editor compiler

KAPSE
functions

debugger

interface specs
config- linker/
uration loader
manager

Fig 4.1. APSE Structure (Ref 10:2)

tool set, it must meet all the requirements set forth in "Stoneman”
for an APSE tool. These requirements are explained below:

1. An APSE tool must be designed to meet a clear functional
need. In this case, the tool must automate as many of the SCM tasks

as possible.

2. An APSE tool must be written in Ada.
i 3. If possible, an APSE tool will be designed to conform to
standard interface specifications.

4. An APSE tool will be machine independent and portable.

5. An APSE tool will be designed to be opemended. It will

always be able to be improved upon.

6. An APSE tool will be user-friendly. Help messages will be
offered to the user. 1In the case of the SC manager, it must be
designed primarily for use by managers and administrators. People who
may have very little experience using automated tools.

7. An APSE tool must be reliable.

8. When necessary, an APSE tool must communicate with other

APSE tools. This requirement is especially important to the software

configuration manager. For example, the software configuration ,f;fj
manager will communicate with the documentation system because
- B |
documentation is an essential part of SCM. -4
9. Communication between the user and an APSE tool will be done S
R
through uniform protocol conventions. 9
- 1
10. When necessary, an APSE tool will generate reports. s
-
- 1
s
R
‘4
38 -
. o Sy ot e m v TN e T -3
e G @ TS e T e, P T P e T e I T TP P PR SRR T AR IR IR D I T N I D
- - - - L £} [} - a2 . LA] L] £ L] A L 1 . L W} [W W] [. 1 LWL WL P WY Ral alalaNa®alhe®a9s2®0% . 8a%,n®40u%eSa®slns A

I iean ote. Sste afus neee e B Wn S Bie fves -2 S e Sute re Mo Bt Sume M apte fee S s —— —_— T ————— i S e e e v et e Suae Jueh S ass Ana A

Besides meeting the requirements of an APSE tool, the software
i configuration manager has requirements arising from the definition of L
SCM. They are: i;;g
1. The SC manager will assist the user in the preparation of i;i;?
I documents. Preparing documents is an important part of SCM.) A:
Unfortunately, this task is often considered the most tedious part of ‘
SCM. The automated tools of both the APSE and the SC manager will
; make this task less tedious. __ ;
2. The SC manager must allow the user to easily check on the f
status of any object. The tool will obtain this information from the
) object's history attribute. One of the main reasons for SCM is to ‘ffj
} control the software throughout the lifecycle. Knowing the status of -':f
? each part of the system will help control the software. Areas that ; l‘
- e
R are causing problems can be identified earlier when they are easier to -4
correct. This requirement is a key to any APSE SC manager. :;;3
; 3. Since the history attribute is so important, the tool must L.;'E
i assure that it is filled out each time an object is created or :mféj
modified.
4. The tool will ensure that the ability to trace the
! development of the software system exists. 1f necessary, a previous ..
version of the system will be able to be recreated. This ability is }
‘ required by the definition of SCM.
) 5. Standard forms are an integral part of SCM. The tool must -
}i be able to generate them and assist the user in filling them out. If _ti
T 9
) .
) o

L T T LN RY W R R ..' -...._-...-.._.-*.-\ RS '._..A.;.....'..._‘.- R .._‘.-_...."._-....‘._-..‘ e e e e ._'."k'_‘.' SO _V.._‘A.\. et et ey

LT AT T LT T T Y G T T - . AR IR L N . . .
R RIGEAL S, L 1 St Rl i Sy B OO A SRR TR AR WL N R A I A U OO e Y

A¥

". "

SR
IR R INSE N

RN

;':‘:Af',‘;v_

the required information is in the system, the user should not have to
supply it again (i.e., user's name, project name, date, etc.).

6. The tool will assist the user in disseminating information
electronically to any other project member. This will make the task
of SCM easier by ending the need to make copies of documents and
manually delivering them.

7. The tool will generate any statistics that are beneficial to
the project.

As can be seen, the APSE software configuration manager will be
composed of many different parts. In order to avoid redundancy, the

tool will need to share features from other parts of the APSE.

SA Requirements

The SA part of the APSE software configuration must fulfill the
requirements explained above. The goal of SA is to maintain a
complete history of a project. This is accomplished by recording the
information pertinent to the project, storing it, and when necessary
publishing it.

The SA part of the APSE software configuration manager must meet
all the requirements of an APSE tool.

1. The SA part of the tool will meet a need. It will record
information, store it in the data base, and when necessary generate
reports.

2. When possible, the SA part of the tool will use standard
interface conventions.

3. All the SA software will be written in Ada.

40

e .
IS B)

et
oo e et
AT
a'a'atala

s fatet et
.] ., e et
2l d ate e e

i

PSPPI UL IR N S D 2 PRI S NI S S ST NP BT BRI Ml S N S S S ST N S R R SR Bl AL

L

L, oy

4. The SA tool will be machine independent and portable.

5. The tool will be designed so that it can be improved upon.

6. The design to the tool will be based on concepts that ensure ii:
the tool will be reliable.

7. The tool will be user—-friendly. The queries into the data
base and any other instruction issued by the system will be easy to
learn and use. Clear "help” messages will help the users when an
error occurs.

8. The SA tool will communicate with other APSE tools. It will
use the documentation system for preparing documentation, the filing

system to keep track of how long objects will remain in the data base

JP S e

before being archived, and the DBMS for queries into the data base. *-_;
9. The SA tool will be designed to use uniform protocol
conventions.

10. The SA tool, upon command, will generate reports. Reports
to be generated include status reports, CCB minutes, and review
minutes. ” A{

As with the configuration manager, the SA part of this tool has
other requirements besides those of an APSE tool. These requirements
are required to fulfill the definition of SA.

1. Documentation is a major part of the SA function. The SA
tool will ensure that the preparer is assisted in preparing all
documentation. Documentation will not be written by the machine, but

the machine can make the task less tedious.

-‘<l ‘,...l ..‘v

' ..
L Taatatals e

41

R, _.‘:. ...‘_.'._.A Sl el ...'_...‘.. Sl e e ‘.-_. ST el

ST TN .
e B o d

2. The SA tool needs to access the history attributes of the
] objects. This is necessary to obtain the information on the status of
‘ the project and trace the history.
.»",;_f 3. By definition, the SA tool needs to be able to trace the
i history of a project. This will be done by being able to recreate
| previous versions of the project.
4. 1In order to maintain a history of a project, one must keep
r;l track of the changes made to it. Forms are used to keep track of
changes. The SA tool will need to ensure the proper forms are
generated. To assist the user, the forms needed in a project will be
D partially filled out by the system if the system already has the
information. Name, date, and project number are examples of -
information the system should be able to supply. - j
. i
a 5. The SA tool will maintain any statistics the project manager -
determines necessary. A
6. The SA tool will be a flexible tool. It will allow the
oot
i amount of control over the software to vary from project to project. o
"_:
3)
| g
9 1
, 4

42

et el e T A e LTI I S R TO ISP Y PV SRV ST SRR AU TSI IE Tl T Mg Sy . .
Tt T e e e e e Lt L T e L e e e e e e e e T N - S R AT e I D R N e A AR U) IR . .
et . .. - PR - P S IR i S NP P S i S Y o . <. . oo PR

B A T S R A PN S PR D W S P R S - P LW W VL P WP WL WA A AP Wil WUE W w W 2 |

R T R PRI IR A ST GO S T T et 2o Y Aot B S atans e

V Functional Design

y [
PRI

Introduction
In this chapter the functional model of the SCM tool is ;
presented. It is presented using Structured Analysis and Design : i
Technique (SADT). SADT is a method designed by SOFTECH to perform 3
functional analysis and design. In this paper only the functional
analysis or what the system 1s supposed to do will be presented. The
- 4

design or how it will be implemented is left for further research.
SADT is a way to diagram in a top—down, modular, and structured

way the model of a system. The complete model consists of a set of

diagrams or nodes. The first node A-0 (read A minus zero) is the most
general. It consists of only one part or box that specifies the
general function of the system. The following nodes get more

detailed. Each one consists of three to six boxes. Each box

represents an activity performed. The boxes are connected by arrows. ;:-A
These arrows show how the boxes interface with each other. SADT does
not show sequence like a flow chart. The meaning of the arrows are
shown in Fig 5.1. The items indicated by the input arrows are
transformed by the activity marked in the box to the items marked by
the output arrows. The items represented by the control arrows govern
how the activity is done. The mechanism arrow is less frequently

used. It shows the device which performs the activity. This

.........

o ———— o— RAREAINE A & An o s e s s s sen mer e o MM Ane i et S ik e Bl i 0 S AT S

[
. control
h inputs activity outputs \
I
!
f
; mechanism
Fig 5.1. SADT Arrow Definition -
o

discussion is a very simplified view of SADT. For a more complete

discussion, see reference 23.

yvver'V"
t

rvi v——Y

44

R LR

P R P AR IR L S Rk
ML AU SRS TR P Ty B AL Y R

Diagrams

Node Index and Corresponding

Decomposition Structure of Diagram

A-0 Accomplish SCM in thie APSE (context)

A O Accomplish SCM in the APSE
- A 1l Perform CI
ﬁ; A 11 Prepare FB
- A 12 1Identify and Label CPCIs
A 13 Prepare AB
A 14 Prepare PB
A 144 Do PB Audits

A 2 Perform Configuration Control

A 3 Perform Status Accounting
A 31 Record Events
A 32 Store Events
A 33 Report Events

A 4 Perform CA

45

PR SN

L
ISP APROE) -

*393foad o3 3d3foad woay Laea
03 J023u0d JO Junomwe 3Y3
AOTTEe TT¥M T003 3YL *3ISdV
9yl Uyl IU0pP ST WIS Moy T0a3
-u0d TIIM S3YSim s,JjuswaSeuem
pue ¢‘azys 3299foad ¢338pnq
243 ‘uemauo3lg ‘suojjerndaa
JU3WUIIA0YH +paANSST aq [IFM
sS{enuew 139Snh SB YOns sjuaun
~J0p 13Yy3lo pur ‘s)ysel IATIRII
-syutupe ‘saujyraseq ‘sadueyd
JOo sniels ayl 3ajedJpufy 3ey3l
sjaoday +3andur xayjoue aie
s3jxoday e*sauyraseg 3Ionpoid
pue ‘paledol[V °‘TeUOFIOUN
9yl apnydouyr 43yl rposonpoad
sae sandino ay3 sinduy ay3l
woxd °*sSIDdD 3yl Lrduy asayl
*suol3edfyyoads 3onpoad
pue ‘jucmdoysasq ‘wmalsis
9yl IpnIoul SuoFIedFJIFoadsg
*anp aae swa3l] asuadsns
usaym pue ‘axe SI3TIITIq
-fsuodsax afayl eym “309f
-0ad ay3l ur ST oym sapnyoug
UOJ3EWIOJUT BAFIBAISFUTWLPE
9yl -peoSeuew aq 3Isnm pue
9seq ejep dYjl uf pairois aq
ITIm eBlep JO yiresm e ‘uass
2q ued Sy -umoys I1e SwSF|
-ueyoam Iyl pue ‘siojdey Jujil
=1013u0d ‘sindjno ‘sanduy ayil
‘uor3ippe ulr -poysiydwmoode
2q 3snm eyl uoyIduUny yeaauald
ay3l saqraossp 31 cweadeyp
12437 3524371y 243 ST O-V

3SdV 243 uT WOS ysyTdwmoddy - JFTILIL 0~V JAON

aseg | 39S

eieq| -tool 12uuosaad
asdv Jsdv 323foag
< S9INUTH JuliaIdY s3uy3asn
< smIod S3TOUDIOTIVQ POATIdIAd
< sjaoday asdv saduey) paisanbay
< ayl ut WOS
o~ saufyaseqd ysyrdwoddy suojjedfJroads
Auuwﬁoum ay3z 3o L101sTH uorljewiojul SATILAISTUTWPY
N

saysym
s, Juswadeuel
22zFg 399foad
398png

urm@auU03lsg

(€-59-ddv
€849-ALS-TIN
TZ°0106¢ dod
61°0T0S dod

62°000S @oa)
suoj3jernday 3Juawuxaa0d

O
~r

-~

[L R

4SdV 3yl uf KOS ysyTdmoddy - IILIL O V AdON
3387003
dsdv
y
\/
¥O
amwc:wwmm m103add ~N
qﬂ Mﬂ& 3987003
3png _, as ASdY
9%Fs 3039foxg €
P s3uT3I99)
N 1Sajnufy SufpIIIVR VS saufyaseq
) 1 1 s3jxoday | maojaagd SuO3edT3Foads
Nsg3d3afoag 3o L103ISTH OJu] @ATIRIISTUTWPY
‘wa3sLs uwwﬁoowh
ay3 @31epITeA pue LJTI2A 221 asd
03 {uop ST VO °VD Pue JJ “wcmﬂa 399(pbad 4
osTe Inq yS§ ATuo jou Jurmioj s, jujuadeuey 328png 20 S9TOUITITIa(Q
~aad uy 3sysse [[Im 13sT003 Sueyd wI03asg paATadxad
9yl °STY3l 103 wsjueyodw 10 UOTSTO3p | saduey)
Laewtad ay3 9q [IIm 9seq paisanbay T2uuosaad
B3IEp ASdV 9yl °wa3Isfs ay3l jo A, 309loag
£10387y ay3 3jaodax pue piod 2128pn
-31 ITIA VS *wd3sfs ayj ug spysfm
saSueyd a)ew 03 poyism pazf s, Juaimadpuey 1
~ue810 ue 18330 ITFM JD 3IXON . 12
uy8aq TTImM ss9d0ad aury Sauireseq | wioyaad Puojlesyjyyoeds
-aseq ay3 ‘paraqel oae s3aed walsLs

2yl uaym *s3aed 291em]13Jos ayl

19qeT pue £3JFIUap] pue sjusuw
-aapnbax waisds ay3 9aje3 TTIM
ID °*WDS 3O suofiduny 2]seq
ano3j 3yl aie Q V Uy paqrad
-S3ap S3JITATIOE anoj 8yl

UBWAUOJS

SuUOf3eIN3ay IUSBWUIBIA0H

~
~

P ——

*£313U2 ue se

Paq1I083p I13m Saurraseq ayl

O V ul °pasn 3dae saujraseq

34yl jo saweu iadoad ayy

1 v ul ‘wexlerp juaized a3yl

Ul umoys 3Jou ST moixe ayl

1Pyl ledJpuj sasayjuaied

Uy paso[duUa peay moiie uy

*s10883d0ad piom se 87003

pajemolne yons £q iafsead

dpeW 3q ued)YSe] §,133ITam

ayl -°siaauj3ual aiemijos

AQ ATTensn asuop }sSej [enuem

@ 8T sjuawndop 1) 8yl Sug
*10 82qFadsap [V

-317aM

uoI3edFITIUaPI uorilean8rjuo)

wrojaad - ALLIL

K

ad v

aaedaiag

€))

e’

v

€

av
aaedaayg]

S TN

S$12dJ

pue

$10dD
19q®1
£373u9p]

Ld

UNﬁmaf

309fo0a1g

saadoTaaaq

T
a4

2
=

a4

T V 3dON

aaedaxg

suollendsy

JU3WUIDA0H

sjuawaarnbay
wa3Isds

@
=

gd @aedaag - ITLIL

saadoraaap

1

™

qd

€
S9TOUIIDIIAQA I
309130) Y,

-t >

¥¥S 3o s3I[nsay

oq N

sSuoFiedrjroadg wazsdg

104
IITIM

TIT V 3dON

SUOTIBINE3Y JUSWUIIAO0Y

sjuawaainbay
walsis

N
~

*38dV 3yl uy 103deJ

§I0dD T9qeT pue AJruapl - A1LIL ZI V

e aq

jou TTFA T3qel Y3l jo

saadoTaaaq

sjaed

S10a5 | pedoraasp

3q-03 T3qeT

swayds
Surtrsqel

amayods
Suytoqer e
aso0yy

32Z}S ay] -uolIdouny aiem3zjos
aylz LAJF3Iuapr 10 ‘aadoydaap
9yl AJTIUSPT ‘SUOTSI3A Mmau
3097321 ‘a@ounouoad pue 1dquam
~31 03 £sed ¥ae 3Jeyl uasoyd
9q ued syaqe] °*Liea ued
samayds Suyraqer 3yl ISTAIF]
-padoraaap aq o3 aaem3jos ayl
3o L3TnoT3I3TIP pue ‘Ldoueiaodmy
‘9z1s ‘ad£3 ayjl aae saydue
-X2 awo§ °*Spoy3law JU3IIJ
~JFp Aueuw Buisn dn paprATp °q
ued Wd3SAs aaemiljos padoyaaap
-2q-03 V *SI0dD @yl Sujraqet
pue Sup£IJTIuapy jJo ssaId

-o0ad 3yl saqiaosop ZI V

sjxed aaemjjos

_W

pedotaaap aq-ol

¢ siaed oaut
sxemijos
padotaaap
9q-03 dnox9

poylau

3JON

1 21emjjos
padorsaap
8q-03 dnoad
03 poyidu |
B asooyd

)

S9ysTm juawadeuey

8zfs 3%9foad

50

Kagil sl asas

gv @aedaid - IILIL €T V IAON
sxadoraa9p
€
| SaFOUITITIA(Q
€ av 393110)
\
[4
adas
4as 3Jo s3Tnsay od
T
suorledy3yoadg uof3eoT3Iroads
huswdotaaag | 3usmdoraaag s10dD
93ITIM [

SUOFIBINIaY JUIWUIIA0YH

51

suofje3luaWNO0P
Sutluedwoode ay3l

pue apod dY3l IpNTOUT [TFA

31 -uolsaaa [eury ay3l ST
jusmnoop Payy3l ayl -a3end
-uey udysap e uj aduop udysap
waisds ay3 pue suopidyaodsap
[eOoFuUyda3l Iyl uyeIUod TITA
UOJSIdA PUODAS YL °WI3ISLs
ay3 jo udysap p2Iyeiap e uyel
-uo0d TTFM UOTSIdA ISATI YL
esaujraseq a3ylo ayi ueyl
xoydwod azow ST 3] °ssadoad

dd 9yl SsaqFIdsap YT V

g4d 2aedaad - ITLIL %1 V JAON

saadoyaaag

I

Aieupuwyidag pag

£ gd
Lieugmyraad
Pif 93ITIM
y
4 ad
ad Lieutmyydad
Lieujmyraag pug puz 23TaM
T ad av
ad L1eutuyiyaad |
LaeuTwiread 3IST IsT m
3ITIM a4

SUOTIBINEIY JUIWUIIA0Y

52

s3ypny d4d od - IILIL

sxadotaaaq
Vi ¥
9 S
m | 89D b (OF |
fd | U9TITJIaP J0d 30 oq
3291100 s3Insay
V4
ad S9TOUSTOTIAP
KxeuymiTaad pag 399110)
v¥od 30
831TNnsSIY
4
S9JOUIFITI3P
LieuTwyiraad pag 3983300
s31nsay
*gd e @onpoad
03 12pa0 uf auop aae eyl
sS3Ipne 3yl smoys I V S3UdUNDOP JUDWUIIA0H
rem .’ o L. - o1 - P

I%1 V ddON

ad
Kieujwyiaid

Pt

L

o
Lin
g o

-
ata

Py

.
4 0

O
P

T

g

CAn Jei S Sy

mwwcwzu uo

UOFSFOap

*uoysSIOAP
Teur3 ay3 3upjem uy €20
3yl 3ISIsSse 03 3INO PITITJ 91e
smxoj paaynbaa jo jes vy -we3
-s£s 3yl jo Suypueisiapunsium
s,a9sn ® 3sn{ 3jou pue 10113
ue sf ATTe31 1T 3I8Yl LJ1I9A
03 paydayd ST ADUITOTIAP
paayadaad y +398pnq urylIm
auop aq ue> pue 3a[qfsess
L11eoTUY233 S} Juawasueyua
ay3 eyl aansua siadoyaasp
ay3l ‘juswmadueyua uUe JO ISED
9yl ul °*3F uy AdSuaIdTIA9p ®
3931100 10 WIISLS Iyl adueyUD
03 paisanbaa aq ue> afueyd
e 8s9d0xd [oajuod uorjzean
-8F3u0d 9yl saqradsap gz V

1013u0) uojIRANSTJUO) WIOJIdd - ALLIL ¢ V FAON
¥
3sanbay
sazi1euy my wea], WOS
(0 J0)
hasT00]
\—, \—, 4sdv
328pnq
spa3au €)
smaog N
swaoyg In0 TTH
4
PRTJITION Jo031sanbay
J03sanbay £ITI0N
suoy3jerndaa
JUBWUIDA09 1
3sanbax uo | 3sanbay SajouslrdIjyaq
UOTSTI9p azAyeuy paaYadxdd
saadoyaaaq saduey)
paisanbay
398png
SaysTA
Juawaeuely

Ly

['

¢ ST Ve

.1411\« i b e e v ﬁ\\ﬂn.i.\.
H i . v

H

|1

54

Ty —

v

39sT00L JSdV

£

pa
V3d09foag jo L103ISTH

*p23BWO3NE 3So0W 3Y3
2q IITA VS ‘WOS 3O suojidunjy
IT® 30 ~-39S7003 IASdV 943 4£q
po3eaausd pue paujejujem pue

aseqelep ISV 3yl uj paio3ls

aq T1Im 392foad ay3z jo £i103
-8TYy @yl *Suriunodde sniels
Jo ssadoad ayjl smoys ¢ V

Vs3a0d

wm wa3sLg
S9INUTK

sjuaalg oseq
3aoday eleq

X

piuaag RUEY|
pa2103s§ 91018

Jsdv

<

A

biuaag
p3p1003Y

s3juaay
paooay

SuTjunodoy snlel§ wioji’d - FILIL € V AQON

sSug3ean

sauyaseq

saysIm| yuawaeury

338png

suoljen8ay UAWUIIA0)

uoj3IeWIOJUF
aAfIRIIS FUTEPY

55

*319%3

03 S3ysFm juawmadeuew 1013
-uod jo junouwe 3yl pue 3daf
-oad ay3 jo L3yxeydmod ay3
¢398pnq 3yl uo spuadap papiod

-31 UOT3IEBWIOJUT BY3l JO 3IUIIXI
ayl, -+3903foad ay3 yjim pajerd
-osse s3urjaswm Jolem ayy TT®
JO S3TNS3al aYyl apuldujf pynom
ejep Sujiassy cpojusuward
-mWl sem 1] uaym pue ‘a3ueyd
34l PIP oym ‘3Ino parTlI
suiol 3yl ‘paaroaur 28ueyd
ay3 jeym ‘adueyo ayj poaisanb
-31 oYM IPNTOUl pInom eiep
?8ueyd ay] -sujrIseq ayj se
paidsooe sem 31T uaym pue auyl
~-9seq pays}rqelsa-aq-o03 a3yl
8301M OYm S® UOTIBWIOJUT YIns
apnIouf pPINOM BIBpP SUFIISeq
ay] -<3o9foad e 3o Lxoisyy
ay3 juasaad o3 arqe 8q ITIA
sata03a3ed asay] +s3urisom
pue ¢sa8ueyd ‘saujrsaseq ayl
axe AayJ], +sataofa3jed ujew
291yl OJUT papiod3x 3aq 03
S3udA9 3yl dn syeaaq g V

SJuaAg p10d9y - IILIL

1¢ V JaON

t .
" sa[nsay sSUTI99K
M\ S3JINUTH {18 & EE) | /
popaooay pP1023y \,
spaaN
393png
4
wa3s4S sadueyd
nv 3yl o031 po uolsioPp o
Mw £L3103sTH | saduey) / v
Twcmco paooay \
IQﬁ» K
spaaN
398png 39s100],
qSdV]
T
sauyraseqd uojjewioJu]
” ay3 jo dATIRIISFUTUPY
M\ huwuwﬁm Suyuorioueg uofjeoFJIoads
auyraseq ~ paooay saujraseq
spaaN \~r
393png
suorje[nday juswWuIaAr0H

*fiowdw uy uyew

-31 T1ITM 303(qo ay3z SuoT moy
S2UTWIIIIP uayl aafeuem a3yl
*303fqo 3yl ssadoe 03 ITqE 2q
ITF oym pue 399[qo ay3z 8ur
-UJaduod Blep dAfIRIISTUTHpPE

uyejuod [TIM S3Inqlalie ayg
*Ino pIaTITJ usayil aae 323(qo
2yl Yy3iym pa3leroosse sajnqlal
-3e 3yl -323fqo ayi Sujweu
pue Sujaes SapnIOUF UOFIOE
STyl +sioafqo ay3 ur paaols
ST elep “38aFd °S3uUlaAd IY3
Buri03s sSaqjadsap ¢ V

.3

L o g

sjuaag 3103§ - A1LLIL Z€ V ddON
aseg eieg ISV
N
€
potaad
uoJ3IuUa3IaYy
s323(qo
asooy)
y
<
¢ $2I0q 1133V /
> §23nqIa33V | ay3 uy eaeq P J
pa103s§ 281018
SaYS M
s, Juauwadeuey 1
2 s393(q0 2y3
S s309[qQ paiols uy ejeq sjuaag
31013S papao2ay

~
[Ta]

h .

\
ki
SOF3IsT3els

[ER YA
33BI3UIH

s
Nsjioday wazsAg

Pl

N s310d3y saInuTK

+pa2sn s3dInosal
3UTYOoeW 03 S13Jdx SIFISTILIS
wa3sAs ayl -+saaSeuew ayj I10jJ
1003 Laewyad e 2q TTIm pue
sSwa31 8yl Jo sniels juaaand
9y3 moys TT1IM s3aodax ayJ
*309foad © 3o Li103sTYy 9yl
1123 ITIm 3eya siaodax 9yl
ITe3dp 2a0m Uf SMOYS g€ V

sjuaag 3aoday - FTLIL €€ V IAON
oseq ele(q [ISdV
€
S9INUTK p /
Sutiesy f N\
23e13U3YH
K
4
sixoday /{
P a8uey))
“sjaoday a8uey) ?23e13U3)
W
T
jaoday
P ¥ aujyraseg
N \sjaoday sujroseqg 3jeaaua) $23NnqQT133V
s303(qo

SUOTJEeTN3daY JUDWUIIA0H

T Coe

58

]

< sauyioeseq |

walsLs 31

K/
1qe3daooe

ST

autmIala(g

*smeadeyp
(12) T V ay3l uy pawwexlerp
ST (Vod ‘vdd ‘¥dd) sumaal
JUdWUIIA03 U PIUTISP SE
VD +dsdvV 2yl uf vO Suyysyid
-WOJd® U} pPFe IIFM 391003
48dV 24l °uofidunj 3291
-300 3aY3 STIIFINI waisds ayl
3Byl SaInsud SIUJTIseq IY3
SujiepyieA c+op o3 pasoddns
ST 31T 31BUMm Saop aaemljos 9yl
Jeyl aansuad [IFA Saufllaseq
ay3 8urfjTasn -I[qeITEAE 1P
8301Nn0Sax JUIIOTIINS JT U0l
-epzjuedio joefoad ayj apysino
atdoad jo pesodmod aq TTIA
wea3 3Ifpne 3yl cenbjuyoal
UOT3IBPJTBA pPUE UOTIBIFITIDA

® Se Jauop y) smoys ¢ Y

3198100
as

13

sauyraseq
palepITeA

sauyreseq

% V ddON

VO wiojyasd - FTLLIL

wu%ﬂﬂ;

398png

._'W .

SaUfTaseyg POFITAAA

33s7003
asdav
[4
saufyaseg
L3109/ saulTaseg
398png T
wed] Tauuosixad
*939 @od_ ITPOY 13430
N wea3 ITPNY | 399188 Tuuosaad
303foad
393png
2zFs 3038foag
n.»,»;.-.\vvrun €« v..» -..M.Ll..k

39

R oo g LRI AT Bl et - T — —— N B en e e teiee Jove -

VI Conclusions and Recommendations

Conclusions

From this research, the following conclusions were drawn:

1. SCM is a complex but important task in the software life
cycle. Through it the cost of software can be reduced and the quality
improved.

2. SCM is a relatively new discipline. Currently, very little
guidance 1s offered on how to accomplish it. The APSE will correct
this situation.

3. The APSE configuration manager will not completely automate
the SCM task. But it will make it easier and less tedious to
accomplish.

4. As with the other APSE tools the configuration manager will

reside in the data base and share other APSE tools.

Recommendations

This paper can be used in several ways. First, it can be used
as a tutorial for an overview of SCM and the APSE. The basic
principles of each are covered. Second, it can be used to analyze
other APSE configuration manager designs or systems. The requirements
chapter can be used as a checklist to ensure that all of the
requirements of Stoneman and the definition of SCM were met. Lastly,

it can be used as a first step towards building and implementing an

MARRL AL I e ie SM e Jiae R4 She S

R :
crele
PRI

T CRBSE uh 2vth st cou s e soe - - v P— — g e—
PR R s e LA T TTT—————— DU A AP by L R T T e— T —— v - -

APSE configuration manager. Both the background work and the . :i
preliminary design of what the tool must do is complete. The next

step will be to design how to implement it. The emphasis in the

implementation design should be in meeting the requirements of the
MAPSE. Stoneman requires that the MAPSE configuration manager be able

to allow access to the history attributes and ensure that the manager

MR IACACADRNGES <o, SR
p T T e R .
]
{
i
e et

has control over the persistence of objects in the data base

(Ref 10:38).

61

Bibliography el

Aeronautical Systems Division. Airborne Systems Software
Acquisition Engineering Guidebook for Application _and Use of the
Guidebooks. ASD-TR-80-5028. Wright-Patterson AFB OH, October
1980.

‘v LA a0 o o vH
—
]
! 1
L]

----- . Airborne Systems Software Acquisition Engineering
Guidebook for Configuration Management. ASD~TR-79-5024. -
Wright-Patterson AFB OH, November 1978.

----- . Airborne Systems Software Acquisition Engineering
Guidebook for Documentation Requirements. ASD-TR-79-5025.
Wright-Patterson AFB OH, November 1978.

————— « Alrborne Systems Software Acquisition Engineering
Guidebook for Regulations, Specifications, and Standards.
ASD-TR-78~6. Wright-Patterson AFB OH, November 1977.

—~---. Airborne Systems Software Acquisition Engineering el
Guidebook for Reviews and Audits. ASD-TR-78-7. Wright- e

Patterson AFB OH, November 1978. - -
----- . Airborne Systems Software Acquisition Engineering X

Guidebook for Software Development Planning and Control.
ASD-TR-80-5022. Wright-Patterson AFB OH, February 1980.

—w=——=, Alrborne Systems Software Acquisition Engineering -
Guidebook for Verification, Validation, and Certification. N
ASD-TR-79-5028. Wright-Patterson AFB OH, September 1978.

Bersoff, Edward H., Vilas D. Henderson and Stanley G. Siegel.
Software Configuration Management An Investment in Product
Integrity. Englewood Cliffs NJ: Prentice-Hall Inc., 1980. -

Bryan, William, Christopher Chadbourne and Stan Siegel, eds. f@}j
"Tutorial: Software Configuration Management,” Initially Sl

presented at the IEEE Computer Society's Fourth International RORS
Computer Software & Applications Conference (COMPSAC 80). IEEE R
Catalog Number EHO 169-3. Falls Church VA: IEEE Computer ~ o
Society, 27-31 October 1980. R

62

fl e, e, . .
.« .. e e e e et L R P I S L T S - . E
Ea L e Lt S e LR A C T TR L AP AU S S SR R R

. . - 3 . L) . - - l‘ A - . . - i
e e T e . R RO R L. e P S A SR
PP Yo B PPV 0. P hd PSPPI b ~ - b s od st at e e atattal LY g .

-y albeioratfienntih AP T W TN, NN LIPS PGPS I DRSPS I LI N IR P IR P TP T VO Tt WA

-~

~— v, v7.~, R

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

e e L WL W e A (‘ o -'4.‘
«a" . " . - Ly

Buxton, J. and V. H. Stenning, eds. "Stoneman,” Requirements
for Ada Programming Support Enviromment. U.S. Department of
Defense, February 1980.

Carlson, William E. “Software Research in the Department of
Defense,” Proceedings of the 2nd International Conferemnce on
Software Engineering. IEEE Catalog Number 76chll25-4c.
379-383. October 1976.

Clema, Joe K. and Larry Levsen, “"Management and Control of
Large-Scale Software Systems,” Weapon System Software
Acquisition, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB OH. 5-14 (1979).

'
R S

Gunther, Richard C. Management Methodology for Software Product
Engineering. New York: John Wiley & Sons Inc., 1978.

TSI,

Knight, B. M. "Software Quality and Productivity,” Weapon
Systems Software Acquisition. Wright-Patterson AFB OH: Air
Force Institute of Techmology, 117-128.

e Lo
S
N VAU .

Pyle, I. C. The Ada Programming Language. London: Prentice-
Hall International Inc., 1981.

Rome Air Development Center (Intermetrics + Mass Comp Assoc).
Ada Integrated Environment Design Rationale: Technical Report
(Interim). 13 March 1981.

Rubey, Raymond J. SofTech, Inc. Course EE 5.45, "Software
Acquisition,” School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB OH. Lecture materials. 1982.

Stoner, Bill. Logicon. Course EE 5.45, "Software Acquisition,”
School of Engineering, Air Force Institute of Technology,
Wright~Patterson AFB OH. Lecture materials. 1982.

U.S. Department of the Air Force. Configuration Management. e
AFR 65~3. Washington: Government Printing Office, 1 July 1974. L

U.S. Department of Defense. Configuration Management. DOD e
Directive 5019.19. Washington: Government Printing Office, 1 C
May 1979.

U.S. Department of Defense. Configuration Management Practices
for Systems, Equipment, Munitions, and Computer Programs.

Military Standard 483. Washington: Govermment Printing Office, s
31 December 1970. .ia;;

U.S. Department of Defense. Reference Manual for the Ada :ifﬁ?
Programming Language Proposed Standard Document. Washington: BACH
Government Printing Office, July 1980.

63 o

PR AR R Rr Ty

M SIS Rt S Mote-Bven SN Buien it A Jvn Sien Jan Besn) — T T T T T T L T T T Y T T W R T I TV Y Ty e v r;‘,a:,-_-‘iv_-ﬁ,’

CHANGE REQUEST

1. System name: 2. Control no.:

3. Application level:

System[| Hardware [] Software[] Document [_] Other [.)

4. A. Originating organization 5. CI affected 6. Documents affected A
(highest level) A. D. [
B. E.
B. Initiator c. F. |
o
C. Telephone # 7. Priority: 8. Other systems/ o]
A. Routine D software/equipment
affected s J
D. Date B. Urgent D Yes D No C]
If yes, explain in B
C. Emergency D block 9.C -
9. Narrative
A. Description of change ‘_“_4

B. Need for change

C. Estimated effects on other systems/software/equipment — »1
D. Alternatives o A:'
SO
. 4

To be completed by cognizant CM manager

10. Date received 12. Disposition

11. ECP requested 13. Signature 14. Date

Yes] no [] - ‘1

Appendix A -~ CR Ref (8:201)

64

B T S R
.

PetS A A]

1. System name:

SOFTWARE INCIDENT REPORT

2. Control no.:

Part 1

3. User activicy 4.

Incident occurred 5.

Software identification (if known)

A. Organization

A. Date

A. Name/acronym

B. Initiator

B. Time

B. Module/subroutine

C. Telephone ¥ [6.

D. Date

Related SIR

Superseded []

C. Software function

7.

Modified []

Urgenc

hig mei::] loq::] n/i::]

8. Problem category

Document D

Executable
code

9. Affected documents

A. D.
B. E.
C. F.

10. Related documents

A.
B.

I1. Media ID no.__ Ji2.
Tape []
cards [}
pisk (]

Executable 13. Duplicate
media tested

yes [] nd]

code address

14. Problem duplicated

yes|no|n/a

During run
After restart
After reload

15. Test spec reference

16.

Dump data information

17. Description of incident, effects, and recommendations

Part I1

18. Developing activity

19. Responsible organization/name

20. Telephone #

21. Analysis/corrective action

22. Disposition:

Documents affected:

[nar (Jorr

A. D.
B. E.
C. F.

(Jsen #

23. Comments to initiator:

Cer e

Appendix A - SIR Ref (8:202)
65
-- ".. ‘-. '.."... ".. '.~" l.;.--' ‘.\n"... -... "\-. ".... - ‘.-. .-‘-.:_'-: ..’\..;"-

PUPETIOR P

2

9% 020 1

0201

1491 _waog uh.-

PO B3 AIV4ONINY |

1-7¢01 _ miog j
|

uITua &g Bawy

L

SUOTINTUs BATITUISITY PUP B350 BpRal I(

|

!..»c:n.‘L

A3ILA3IW JuswuINA

D o wojaedl)jeee)

oy anuo) dox ou]

aBuBy) JO welIw3})
~1envt> vy answop]

POPusmcod ey

w™ -] -]

HEBLLUFIK]] seepd v,

Terosddveia;

[ZX T SO

#

131l

s3navulys Yujzjaoqany L3garidv Susasgmans g7

uhy] I1EFNT

92607 [€30: 3% PRINEIAS] 7o

e

25¢2380) 1apun sWUTAVS/E380) praewIe] °1

[P AR AR P St nm oS U - A3341338
1J0d1ag 57

TRPILIS hIBATTSG BO]IINPO

adqeny 191285 &q 42343338333 wo33dnpoag gl

SnIvis pur 31udEsanbay [FICeMdoTIasg .=A
'
i

SU0110317738d5 wa1] wopIEINTITIuOY UD BI85 13 *Of;

sturyy 20) poey (1l

T328 "992Usa1338;33 (wuojirasdy ‘Jujuiviz ‘zeddng 33293307 paieaBean ‘udeiordez w0 8338373 "¢)

shuryy jo opadyaans sy

uo33Pujieeg 4K 2o o 23wy 5T !

P3330; Jv_A[quassy 388n0 JO 1184 3O Swey o

S0FI¥31 313845 WRInAS U] S2IVJIPIU] PUF SUOTIFIO| TV BIUEFEIO}ISd YO B1DS))3 “§

[y oA
o §31onpaST

2a0IVTIUSEON B3] UGTIRANIJuL) oY

w81} SUJY § "0 33¥IIU0) T

Stuws) jo o1anL ~o¥

Wria 383 -
T1d 328

T whIBAS ¥

$91385)y BuDI] WoTIvINByu0) (T

WOT383}) j3usp] woj I

P10 5V SRTITATIFV/9I0IINIIVGY) INYIO *Y7

P30 3v 982384 3ay10 ¢

1 Jedson

“on_“30g/38Cs *PO3 3w

P9303; jv shuimvi. ‘o

Ue (g 1883 - pBIdajjV_sueiato1)15ads §

al],]

o138 5y eusd) B} Juc) ks IByip ©

2] TIY)

120y ¥

«noy ~3imday ‘9 -0x 433 *P{B18ac 8ig -]aped -3;k ~q |edh:rTepen: v ¥

L

aanpesg [wotiv [~owma [

Pa3ejiv SuiTasey ‘o

voiIwulieag 433 ¢

dsmny 433

95205y pus swey 1o3ewiSiio

oy “

A1120144 -y |"2enr - (D3 JO e[, -7

ssuappy puv smwy scawwidia 1

con £35agidv Buiindoag

pesvdesy a3vg

(980329033001 10] OPY-QLS-TIN 80%)
7 2394 ‘1er0uciy MNERY !.:u’:u.&

cox £3114130v Buiandesd m

pravdeag 21vg

(VOFIONIIBN] 30) DPI-CIS=TIN 995
3 abey ‘1esodoay sBuwy; Wujiseuybu:

KV390¥d ¥YILNdWOD V ¥0d WIOd 433

Ref (18)

Appendix A - ECP

SOFTWARE CONFIGURATION MANAGEMENT PLAN

2. Identification No(s)

3.1 The Software Configuration Management Plan
(SCMP) describes the contractor's internal computer
software configuration management organization; the
responsibility of the members; the relationship
among the several offices/divisions; the policies
and procedures for identifying the documentation
of the functional and physical characteristics of
configuration items required by the contract; pro-
cedures for controlling changes to configuration

Data Item Description Agency Number
1. Title
Software Configuration Management Plan Navy DI-E-2175
3. Description/Purpose 4. Approval Date

29 November 1978

S. Office of Primary
Responsibility
NM(MAT-09Y)

6. DDC Required

! items during development; (continued on page 2)

: 7. Application%Interrelationship

7.1 The Software Configuration Management Plan pro-
vides the contractor the means to consolidate all
policies, procedures, organizational descriptions,
resources and schedules relating to software config-
uration management in one document. The SCMP pro-
vides the procuring activity with detailed knowledge
of the contractor's configuration management.

Through the SCMP the procuring activity can monitor
the contractor's application of configuration manage~
ment principles in conformance with standards invoked
in the contract.

¥

}
)

7.2 This Data Item Description supersedes
UDI-E~22191.

8. Approval Limitation

9. References (Mandatory]
as cited in block 10)

MIL-STD-1679 (Navy)

MCSL Number (s)

10. Preparation Instructions.

defined within.

SECTION 1 -~ Introduction.

eneral applicability of the SCMP.

3
}
*. plan's major features and objectives.

10.1 Unless otherwise stated in the solicitation, the effective date of the
idocument(s) cited in this block shall be that listed in the issue of the DoD Index
of Specifications and Standards (DoDISS) and the supplements thereto specified in
the solicitation and will form a part of this Data Item Description to the extent

10.2 Content and Format Instructions. The Software Configuration Management
Plan shall be in accordance with the following content and format instructions:

1.1 Purpose and Scope. This paragraph shall state the purpose, scope, and

1.2 Definitions. This paragraph shall reference applicable directives or
lossaries containing definitions of terminology used in the SCMP and shall
further define any terms used which are not contained herein.

1.3 Configuration Management Summary. This paragraph shall provide a concise
summary of the approach used to accomplish configuration management. Describe the

67

Appendix B - DID for CM Plan

[DD FORM 1664 S/N OL02-LF~039-4000 Page 1 of 3 pages
- 1 JUN 68 —_ -

Ref (9)

P R SO

4

DI-E-2175
3. DESCRIPTION/PURPOSE (continued)

: procedures for recording and reporting change processing implementation status; and the
external relationships required to maintain total system compatibility.

10. PREPARATION INSTRUCTIONS (continued)

SECTION 2 - Applicable Documents.

. This section shall list those specifications, standards, manuals, and other
documents applicable to the configuration management effort. Each document shall be
completely identified by title, document number, issuing authority, and date of issue.

SECTION 3 - Software Configuration Management (CM) Organization

This section shall identify the contractor's organtzation for CM. It shall show the:

E a. Relationships among the contractor's project organization, functional
organizations, and facility management.

b. Responsibilities and authority for CM of all participating groups and
organizations.

) c. Identification of contractor CM organization including configuration control
® boards, both internal and external.
b

d. Policies and directives relating to CM.
. e. Relationships among the contractor's software CM organizatfion, the contractor's

hardware CM organization, and the project's hardware CM organization when the software
is only one element of the weapon system being developed.

E SECTION 4 - Software Configuration Identification.

This section shall present the contractor's implementation plans for:
B a. Selecting and identifying configuration items, as required by the contract, and
- additional iteams considered necessary by the contractor to ensure proper configuration

i{dentification.

b. Developing, numbering, changing, and maintaining specifications and their
relationship with specification trees.

c. Establishing internal baselines as appropriate.

d. Preparing and processing of design specifications during development and their
identification and relat{onship to higher level specifications or documentation.

e. Establishing the development support library.

f. Assignment of nomenclature and serial numbers.

SECTION 5 - Software Configuration Control.

This section shall describe the contractor's organization and procedures for:

a. Configuration control, including depth of control, interfaces, and
subcontractor/vendor control.

Appendix B - DID for CM Plan Ref (9)
(continued)

DI-E-2175
* 10. PREPARATION INSTRUCTIONS (continued)
b. Preparation, processing and submittal to the contractor's internal configuration —]
control board of Software Change Proposals (SCP), Software Enhancement Proposals (SEP) 4

and Engineering Change Proposals (ECP).

c. Preparation, processing and submittal to procuring agency or the procuring
agency's representative configuration control board of SCPs, SEPs, and ECPs.

d. Promulgation and implementation of specification change notices.
e. Preparation and processing of Software Trouble Reports (STR). S
f. Ensuring that the implementation of approved changes 18 reflected in all facets ;.i'tj
v of the affected baselines, program descriptive documentation, and program materials T

(e.g., design, test, and user narrative). | 4{5

r; g- The contractor's software configuration control board. R

SECTION 6 ~ Software Configuration Authentication.

This section shall describe the contractor's procedures for:
a. Reconciling deliverable software to its approved documentation.

b. Assuring that the software, descriptive documentation, and program materials are ~ 9
properly identified. - 4

c. Assuring the incorporation of approved changes. R
d. Reconciling the configuration status accounting reports and the status of the
software, descriptive documentation, and program materials with the approved baseline(s)

and its approved changes.

SECTION 7 - Software Configuration Status Accounting. -9

.

This sectfon shall present the contractor's procedures for collecting, recording, O
processing, and maintaining data necessary for producing configuration status accounting
reports. It shall include:

FOW G

J SR

a. Formats and data elements for software CM status accounting records and reports. i

b. Content and format of periodic summary reports to reflect status of SCPs, SEPs, -”i}
and STRs as appropriate. ’

SECTION 8 - Interface Management.

k]
dedinin i

This sectfion shall describe the contractor's plan for coordinating efforts involved
in design and data management to ensure compatibility through interfaces with associated
contractors. -

etk

SECTION 9 - Subcontractors & Vendors.

This section shall present the contractor's system for control over subcontractors AR
and vendors. In particular, ft shall explain the capability of subcontractors/vendors
to support the requirements of Configuration Management. It shall enumerate the
requirements and provisions for review and approval of all changes submitted by R
subcontractors/vendors to comply with established procedures. .o

Appendix B -= DID for CM Plan Ref (9)
(continued)

69

S g VL S T S T Jr Tt AU TVUC T ST PPL P APUPAPRCIR S
S T Lt N . N . .y gt PR

.
- - - ., - . . - .
LIPS APVEINEL A PRV W A R SR W P SO T i PPN W WK %

e e e

A ™ e e % e
PR L PN, AT R LA

f"?w“.~ T T ——— N R R I r=—

I A RAGRAR AR
NARAR

Vita

Susan Mary Schultz was born on 8 June 1953 in Royal Oak,
Michigan. She graduated from Royal Oak Dondero High School in 1971.
She received a Bachelor of Arts degree in Math in 1976 from Wayne
State University in Detroit, Michigan. She entered the Air Force on
active duty in 1978 and, in November of that year, received her
commission from Officer Training School. Until entering the School of
Engineering, Air Force Institute of Technology in June 1981, she
served as a Computer Systems Programs Officer at Headquarters Tactical

Alr Command, Joint Studies Group, Nellis Air Force Base, Nevada.

'
. e
oo ST
DN T U L S

UNCLASSTIFIED
SECURITY CLASSIFICATION OF THIS PAGE

‘*

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS ,
UNCLASSIFIED - 9
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT '
Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBERI(S! 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6€S/MA/82D-12 .

W

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
tIf applicable)
School of Engineering AFIT/ENC

6c. ADORESS (City. State and ZIP Code) 7b. ADORESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright~Patterson AFB, Ohio 45433

—

—

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicablie;

—r—

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE (Include Security Classification) . :
See Box 19) .
_12. PERSONAL AUTHORI(S) o
. @ Susan M, Schultz, B,A., Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT '
MS Thesis FROM TO 1984 June 70 .
16. SUPPLEMENTARY NOTATION e
COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) i o
e

FIELD GROUP SUB. GR.

Ada, Configuration Managment, “Ada Programming Support R
Enviroment (APSE). .

19. ABSTRACT (Continue on reverse if necessary and identify by block numniber) - - L

Title: Preliminary Design of The Ada Programming Support Enviroment
Configuration Manager

Thesis Chairman: Patricia Lawlis, Captain, USAF A AFR 19017, -
proved tor public fele wE P
i Lot P L I B
LYnN € Vobe L, pretessivnal Developeal
Wiight-Patiorson Ai D OoH 424 e et
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION -
: '.lmcussmeo/um.wneo & same as reT. O oTic users O UNCLASSIFIED e
22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL e
tinclude Area Code) o
Patricia Lawlis, Captain, USAF 513-255-3636 AFIT/ENC
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. -

SECURITY CLASSIFICATION OF THIS PAGE N

P Ty T
R R I S i S S e P R A

)

Y

Lo

UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE

Today the development and maintenance of software are becoming .
X prohibitively costly. With the goal of reducing the cost of producing e
= a software system without sacrificing the quality of it, the -
;: Department of Defense (DOD) is sponsoring the development of the Ada :{
’ Programming Support Environment (APSE). This pafper exphins the Lo
APSE. 1t also explains the requirements and gives a preliminary X
design of one of the major tools of the APSE, the configuration s
¢ manager. The preliminary design of this tool is presented using -

B Structured Analysis and Design{¢TSADT) diagrams. Thé preliminary s -
. design includes only a functional description of the configuration o
i manager, How to implement it 1s left for further research :
“ A - /a,,,v.l I e, T s
k; Prior to presenting the prellmlnary des1gn of the configuration .
manager, a description of how(SCMJis currently practiced is given.

[SCM is divided into four functions. They are configuration

f identification (CI), configuration control (CC), status accounting -
. (SA), and configuration auditing (CA). SA is the only function that 3
k. can be completely automated., Therefore, the preliminary design ol

emphasizes the SA function. 7 |

P

ATf.r*.'fT‘—- .ii‘rrrT,...., m: "
Lol -'_‘ . o e L ! ' .
I

SECURITY CLASSIFICATION OF THIS PAGE

A I PV LS P BT ST IO SO Ry U :
S A A e T T T T T

.
‘;1 h I, P PR g'g'-!x‘._!;‘-.rA'A_'L“'

LR IR S 7, . "-'.‘-‘ ET Y et oa - an
AONEANRAS ~a ,-...\ Rt SR i N A S
FEVEACAE A S EIEAE SCABAE AL AR ARAS R ARG E A S I A

4-85

